Парная корреляционная гипотеза Монтгомери

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
Хью Монтгомери в Обервольфахе в 2008 году

Па́рная корреляцио́нная гипо́теза Монтго́мери — гипотеза американского математика Хью Монтгомери (англ.) (1973) о том, что парная корреляция между парами нулей дзета-функции Римана (нормированная к единице среднего расстояния) есть[1]:

что, как указал ему Фримен Дайсон, совпадает с парной корреляционной функцией случайных эрмитовых матриц. Неформально это означает, что вероятность нахождения нуля в очень коротком интервале длины 2πL/log(T) на расстоянии 2πu/log(T) от нуля 1/2+iT примерно в L раз превышает приведённое выше выражение. (Коэффициент 2π/log(T) является нормировочным фактором, который можно неофициально представить как среднее расстояние между нулями с мнимой частью относительно T.) Эндрю Одлыжко (англ.) (1987) показал[2], что гипотеза была подтверждена крупномасштабными компьютерными вычислениями нулей дзета-функции Римана. Гипотеза была распространена на корреляции более 2 нулей, а также на дзета-функции автоморфных представлений[3]. В 1982 году студент Монтгомери Али Эрхан Озлюк доказал гипотезу о парной корреляции для некоторых L-функций Дирихле[4].

Связь со случайными унитарными матрицами может привести к доказательству гипотезы Римана. Гипотеза Гильберта — Пойа (англ.) утверждает, что нули дзета-функции Римана соответствуют собственным значениям линейного оператора, и подразумевает RH. Ряд исследователей считают, что это является перспективным подходом[2].

Монтгомери изучал преобразование Фурье F(x) парной корреляционной функции и показал (предполагая гипотезу Римана), что она равна |x| для |x|<1. Его методы не смогли определить его для |x|≥1, но он предположил, что он был равен 1 для этих x, что подразумевает, что парная корреляционная функция такая же, как и выше. Он также был мотивирован тем, что гипотеза Римана не является «кирпичной стеной», и можно смело высказывать более сильные предположения.

Численный подсчёт Одлыжко[править | править код]

Вещественная линия описывает двухточечную корреляционную функцию случайной матрицы типа ГУА. Синие точки описывают нормализованные расстояния первых 105 нетривиальных нулей дзета-функции Римана.

В 1980-х годах, мотивированный гипотезой Монтгомери, Одлыжко начал интенсивное численное исследование статистики нулей дзета-функции Римана. Используя самый быстрый в мире суперкомпьютер Cray X-MP, проведя детальные численные расчёты, он продемонстрировал подтверждение гипотезы Монтгомери и соответствие распределения расстояний между нетривиальными нулями собственным значениям случайной матрицы гауссова унитарного ансамбля (ГУА). Результаты Одлыжко опубликовал в 1987 году в статье «О распределении расстояний между нулями дзета-функции»[2].

Для нетривиального нуля, 1/2+iγn, пусть нормированные расстояния будут

Тогда мы ожидаем следующую формулу в качестве предела для :

Основываясь на новом алгоритме, разработанном Одлыжко и Шёнхаге (англ.), позволившим им вычислить значение ζ(1/2 + it) в среднем времени tε шагов, Одлыжко вычислил миллионы нулей на высотах около 1020 и дал ряд доказательств для ГУА-гипотезы[5].

На рисунке представлены первые 105 нетривиальных нулей дзета-функции Римана. Чем больше выборок из нулей, тем ближе их распределение приближается к форме случайной матрицы ГУА.

Связь с квантовым хаосом[править | править код]

Как указывает кандидат физико-математических наук Трушечкин А. С., распределение нетривиальных нулей дзета-функции Римана тесно связано с явлением квантового хаоса[6][7]:

Явление квантового хаоса оказалось тесно связано с распределением нетривиальных нулей дзета-функции Римана (Монтгомери, 1973 г., Одлыжко, 1987 г.). Одним из подходов к известной проблеме о нулях дзета-функции был предложен Гильбертом и Пойа. Согласно их гипотезе (англ.), нетривиальные нули дзета-функции соответствуют собственным значениям некоторого самосопряжённого оператора в гильбертовом пространстве. В 1986 г. Берри предположил, что этот самосопряжённый оператор может являться оператором Гамильтона квантовой системы, которая соответствует классической хаотической системе. Позже Конн, а также Берри и Китинг (англ.) предложили гамильтонианы, у которых первые два ведущих члена в распределении собственных значений в квазиклассическом пределе совпадают с соответствующими членами распределения нетривиальных нулей дзета-функции (даваемыми формулой Римана–Мангольдта).

Примечания[править | править код]

  1. Montgomery, Hugh L. (1973), «The pair correlation of zeros of the zeta function», Analytic number theory, Proc. Sympos. Pure Math., XXIV, Providence, R.I.: American Mathematical Society, pp. 181–193, MR 0337821.
  2. 1 2 3 Odlyzko, A. M. (1987), «On the distribution of spacings between zeros of the zeta function», Mathematics of Computation, 48 (177): 273–308, doi:10.2307/2007890, ISSN 0025-5718, JSTOR 2007890, MR 0866115.
  3. Rudnick, Zeév; Sarnak, Peter (1996), «Zeros of principal L-functions and random matrix theory», Duke Mathematical Journal, 81 (2): 269–322, doi:10.1215/S0012-7094-96-08115-6, ISSN 0012-7094, MR 1395406.
  4. Özlük, A. E. (1982), Pair Correlation of Zeros of Dirichlet's L-functions, Ph. D. Dissertation, Ann Arbor: Univ. of Michigan, MR 2632180.
  5. Odlyzko A. M., «The 1020-th zero of the Riemann zeta function and 70 million of its neighbors» AT&T Bell Lab. preprint (1989)
  6. Трушечкин А. С., Квантовый хаос, периодические орбиты и дзета-функция Римана. // Краткое изложение заявки.
  7. Трушечкин А. С., Видеодоклад (2013) по темам: аксиомы квантовой механики, чудо квантовой интерференции, квантовая вероятность, группа Гейзенберга–Вейля, интегралы Фейнмана по путям, квантовая телепортация, квантовый хаос и дзета-функция Римана.