Инерция
Классическая механика | ||||||||
История… | ||||||||
| ||||||||
См. также: Портал:Физика |
Ине́рция (от лат. inertia — бездеятельность, синоним: инертность[1]) — свойство тела оставаться в некоторых системах отсчёта в состоянии покоя или равномерного прямолинейного движения в отсутствие внешних воздействий[2], а также препятствовать изменению своей скорости при наличии внешних сил.
Применительно к ситуации без воздействия предпочтительнее использование слова «инерция», а в иных ситуациях — «инертность».
Формулировка[править | править код]
Существование инерциальных систем отсчета в классической механике постулируется первым законом Нью́тона, который также называется зако́ном ине́рции. Его классическую формулировку дал Ньютон в своей книге «Математические начала натуральной философии»:
|
Современная, более точная, формулировка закона:
|
Системы отсчёта, в которых выполняется закон инерции, называют инерциальными системами отсчёта (ИСО). Все другие системы отсчёта (например, вращающиеся или движущиеся с ускорением) называются соответственно неинерциальными.
В неинерциальных системах отсчёта закон инерции не выполняется. Тем не менее, движение тел в неинерциальных системах отсчёта можно описывать теми же уравнениями движения, что и в инерциальных, если наряду с силами, обусловленными воздействием тел друг на друга, учитывать силы инерции[4][5].
История[править | править код]
Древнегреческие учёные, судя по дошедшим до нас сочинениям, размышляли о причинах совершения и прекращения движения. В «Физике» Аристотеля (IV век до н. э.) приводится такое рассуждение о движении в пустоте[6]:
![]() |
Никто не сможет сказать, почему [тело], приведенное в движение, где-нибудь остановится, ибо почему оно скорее остановится здесь, а не там? Следовательно, ему необходимо или покоиться, или двигаться до бесконечности. | ![]() |
Однако в другом труде «Механика», приписываемом Аристотелю, утверждается[7]:
![]() |
Движущееся тело останавливается, если сила, его толкающая, прекращает своё действие. | ![]() |
Наблюдения действительно показывали, что тело останавливалось при прекращении действия толкающей его силы. Естественное противодействие внешних сил (трения, сопротивления воздуха и т. п.) движению толкаемого тела при этом не учитывалось. Поэтому Аристотель связывал неизменность скорости движения любого тела с неизменностью прилагаемой к нему силы.
Только через два тысячелетия Галилео Галилей (1564—1642) смог исправить эту ошибку «аристотелевской физики». В своем труде «Беседы о двух новых науках» Галилей писал[7]:
![]() |
…скорость, однажды сообщенная движущемуся телу, будет строго сохраняться, поскольку устранены внешние причины ускорения или замедления, — условие, которое обнаруживается только на горизонтальной плоскости, ибо в случае движения по наклонной плоскости вниз уже существует причина ускорения, в то время, как при движении по наклонной плоскости вверх налицо замедление; из этого следует, что движение по горизонтальной плоскости вечно | ![]() |
Это суждение нельзя вывести непосредственно из эксперимента, так как невозможно исключить все внешние влияния (трение и т. п.). Поэтому, здесь Галилей впервые применил метод логического мышления, базирующийся на непосредственных наблюдениях и подобный математическому методу доказательства «от противного». Если наклон плоскости к горизонтали является причиной ускорения тела, движущегося по ней вниз, и замедления тела, движущегося по ней вверх, то при движении по горизонтальной плоскости у тела нет причин ускоряться или замедляться — и оно должно пребывать в состоянии равномерного движения или покоя.
Таким образом, Галилей просто и ясно доказал связь между силой и изменением скорости (ускорением), а не между силой и самой скоростью, как считали Аристотель и его последователи. Это открытие Галилея вошло в науку как закон инерции. Однако, Галилей допускал свободное движение не только по прямой, но и по окружности (видимо, из астрономических соображений). В современном виде закон инерции сформулировал Декарт. Ньютон включил закон инерции в свою систему законов механики как первый закон.
Смежные понятия[править | править код]
Принцип относительности Галилея: во всех инерциальных системах отсчёта все механические процессы протекают одинаково (если начальные условия для всех тел одинаковы). В системе отсчёта, приведённой в состояние покоя или равномерного прямолинейного движения относительно инерциальной системы отсчёта (условно — «покоящейся»), все процессы протекают точно так же, как и в покоящейся системе.
Следует отметить, что понятие инерциальной системы отсчёта — абстрактная модель, то есть некий идеальный объект, рассматриваемый вместо реального объекта (другими примерами абстрактной модели служат абсолютно твёрдое тело или нерастяжимая невесомая нить). Реальные системы отсчёта всегда связаны с каким-либо объектом или объектами, и соответствие реально наблюдаемого движения тел в таких системах результатам расчётов будет неполным. В то же время точность подобной абстракции в земных условиях весьма велика и ограничивается лишь величиной искривления пространства-времени, которое было предсказано в рамках общей теории относительности (1915 год) и впервые зафиксировано в 1919 году при исследовании отклонения света в гравитационном поле Солнца.
Инертная масса — мера инертности тела в физике, показатель того, в большей или меньшей степени данное тело будет препятствовать изменению своей скорости относительно инерциальной системы отсчёта при воздействии внешних сил. Инертная масса фигурирует в выражении второго закона Ньютона, являющегося важнейшим законом классической механики.
См. также[править | править код]
Примечания[править | править код]
- ↑ Инерция // Физическая энциклопедия / Гл. ред. А. М. Прохоров. — М.: Советская энциклопедия, 1990. — Т. 2. — С. 146. — 704 с. — 100 000 экз. — ISBN 5-85270-061-4.
- ↑ Инертность // Физическая энциклопедия / Гл. ред. А. М. Прохоров. — М.: Советская энциклопедия, 1990. — Т. 2. — С. 144. — 704 с. — 100 000 экз. — ISBN 5-85270-061-4.
- ↑ Инерциальная система отсчёта // Физическая энциклопедия / Гл. ред. А. М. Прохоров. — М.: Советская энциклопедия, 1990. — Т. 2. — С. 145. — 704 с. — 100 000 экз. — ISBN 5-85270-061-4.
- ↑ Савельев И. В. Курс общей физики. Т. 1. Механика. Молекулярная физика. — М.: Наука, 1987. — С. 118—119.
- ↑ Ландсберг Г. С. Элементарный учебник физики. Том 1. Механика. Теплота. Молекулярная физика. — М.: Наука, 1975. — C. 292
- ↑ Физика (Аристотель)/Книга 4/Глава 8
- ↑ 1 2 Эйнштейн А., Инфельд Л. Эволюция физики. — М.: Наука, 1965. — С. 10-12.
Литература[править | править код]
- Лич Дж. У. Классическая механика. М.: Иностр. литература, 1961.
- Спасский Б. И.. История физики. М., «Высшая школа», 1977.
- Кокарев С. С. Три лекции о законах Ньютона. Ярославль. Сб. трудов РНОЦ Логос, вып. 1, 45-72, 2006.
Ссылки новых исследований:
- Masreliez C. J., Motion, Inertia and Special Relativity — a Novel Perspective, Physica Scripta (2006).
- Masreliez C. J., On the origin of inertial force, Apeiron (2006).
- Masreliez, C J; Dynamic incremental scale transition with application to physics and cosmology, Physica Scripta (2007).