Пирамидальная сортировка

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Анимированная схема алгоритма

Пирамидальная сортировка (англ. Heapsort, «Сортировка кучей»[1]) — алгоритм сортировки, работающий в худшем, в среднем и в лучшем случае (то есть гарантированно) за Θ(n log n) операций при сортировке n элементов.[2] Количество применяемой служебной памяти не зависит от размера массива (то есть, O(1)).

Может рассматриваться как усовершенствованная сортировка пузырьком, в которой элемент всплывает (min-heap) / тонет (max-heap) по многим путям.

История создания[править | править вики-текст]

Пи­ра­ми­даль­ная сор­ти­ров­ка бы­ла пред­ло­же­на Дж. Уи­льям­сом в 1964 го­ду.[1]

Алгоритм[править | править вики-текст]

Пример сортирующего дерева
структура хранения данных сортирующего дерева

Сортировка пирамидой использует бинарное сортирующее дерево. Сортирующее дерево — это такое дерево, у которого выполнены условия:

  1. Каждый лист имеет глубину либо , либо ,  — максимальная глубина дерева.
  2. Значение в любой вершине не меньше (другой вариант — не больше) значения её потомков.

Удобная[источник не указан 53 дня] структура данных для сортирующего дерева — такой массив Array, что Array[0] — элемент в корне, а потомки элемента Array[i] являются Array[2i+1] и Array[2i+2].

Алгоритм сортировки будет состоять из двух основных шагов:

1. Выстраиваем элементы массива в виде сортирующего дерева[источник не указан 53 дня]:

при .

Этот шаг требует операций.

2. Будем удалять элементы из корня по одному за раз и перестраивать дерево. То есть на первом шаге обмениваем Array[1] и Array[n], преобразовываем Array[1], Array[2], … , Array[n-1] в сортирующее дерево. Затем переставляем Array[1] и Array[n-1], преобразовываем Array[1], Array[2], … , Array[n-2] в сортирующее дерево. Процесс продолжается до тех пор, пока в сортирующем дереве не останется один элемент. Тогда Array[1], Array[2], … , Array[n] — упорядоченная последовательность.

Этот шаг требует операций.

Достоинства и недостатки[править | править вики-текст]

Достоинства

  • Имеет доказанную оценку худшего случая .
  • Сортирует на месте, то есть требует всего O(1) дополнительной памяти (если дерево организовывать так, как показано выше).

Недостатки

  • Сложен в реализации.
  • Неустойчив — для обеспечения устойчивости нужно расширять ключ.
  • На почти отсортированных массивах работает столь же долго, как и на хаотических данных.
  • На одном шаге выборку приходится делать хаотично по всей длине массива — поэтому алгоритм плохо сочетается с кэшированием и подкачкой памяти.
  • Методу требуется «мгновенный» прямой доступ; не работает на связанных списках и других структурах памяти последовательного доступа.

Сортировка слиянием при расходе памяти O(n) быстрее ( с меньшей константой) и не подвержена деградации на неудачных данных.

Из-за сложности алгоритма выигрыш получается только на больших n. На небольших n (до нескольких тысяч) быстрее сортировка Шелла.

Применение[править | править вики-текст]

Алгоритм «сортировка кучей» активно применяется в ядре Linux.

Примечания[править | править вики-текст]

Литература[править | править вики-текст]

Ссылки[править | править вики-текст]