Поверхностное натяжение

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
Монета, лежащая на поверхности воды благодаря силе поверхностного натяжения
Когезия формирует водяные капли, поверхностное натяжение делает их почти сферическими, а адгезия держит их на поверхности другого вещества
Механика сплошных сред
BernoullisLawDerivationDiagram.svg
Сплошная среда
См. также: Портал:Физика

Пове́рхностное натяже́ние — термодинамическая характеристика поверхности раздела двух находящихся в равновесии фаз, определяемая работой обратимого изотермокинетического образования единицы площади этой поверхности раздела при условии, что температура, объём системы и химические потенциалы всех компонентов в обеих фазах остаются постоянными.

Поверхностное натяжение имеет двойной физический смысл — энергетический (термодинамический) и силовой (механический). Энергетическое (термодинамическое) определение: поверхностное натяжение — это удельная работа увеличения поверхности при её растяжении при условии постоянства температуры. Силовое (механическое) определение: поверхностное натяжение — это сила, действующая на единицу длины линии, которая ограничивает поверхность жидкости[1].

Сила поверхностного натяжения направлена по касательной к поверхности жидкости, перпендикулярно к участку контура, на который она действует и пропорциональна длине этого участка. Коэффициент пропорциональности  — сила, приходящаяся на единицу длины контура — называется коэффициентом поверхностного натяжения. В СИ он измеряется в ньютонах на метр. Но более правильно дать определение поверхностному натяжению, как энергии в джоулях на разрыв единицы поверхности (м²). В этом случае появляется ясный физический смысл понятия поверхностного натяжения.

В 1983 году было доказано теоретически и подтверждено данными из справочников[2], что понятие поверхностного натяжения жидкости однозначно является частью понятия внутренней энергии (хотя и специфической: для симметричных молекул близких по форме к шарообразным). Приведенные в этой журнальной статье формулы позволяют для некоторых веществ теоретически рассчитывать значения поверхностного натяжения жидкости по другим физико-химическим свойствам, например, по теплоте парообразования или по внутренней энергии[3][4]).

В 1985 году аналогичный взгляд на физическую природу поверхностного натяжения как части внутренней энергии при решении другой физической задачи был опубликован В. Вайскопфом (Victor Frederick Weisskopf) в США[5].

Поверхностное натяжение возникает на границе газообразных, жидких и твёрдых тел. Обычно под термином «поверхностное натяжение» имеется в виду поверхностное натяжение жидких тел на границе жидкость — газ. В случае жидкой поверхности раздела поверхностное натяжение правомерно также рассматривать как силу, действующую на единицу длины контура поверхности и стремящуюся сократить поверхность до минимума при заданных объёмах фаз.

Прибор для измерения поверхностного натяжения называется тензиометр.

Проявления[править | править код]

Водомерка на поверхности воды.

Так как увеличение площади поверхности раздела жидкость — газ требует совершения работы, жидкость «стремится» уменьшить площадь своей поверхности:

  • в невесомости порция жидкости принимает сферическую форму (сфера имеет наименьшую площадь поверхности среди всех тел одинакового объёма). То же самое происходит с каплей жидкости, помещаемой внутрь другой, несмешивающейся жидкости с первой жидкостью той же плотности (опыт Плато).
  • ламинарная струя воды образует цилиндр, который затем разбивается на шаровидные капли из-за неустойчивости Рэлея — Плато.
  • небольшие предметы со средней плотностью большей плотности жидкости способны «плавать» на поверхности жидкости, так как их вес оказывается уравновешенным силой поверхностного натяжения.
  • некоторые насекомые (например, водомерки) способны передвигаться по воде, удерживаясь на её поверхности за счёт сил поверхностного натяжения.
  • На многих поверхностях, именуемых несмачиваемыми (гидрофобными), вода (или другая жидкость) собирается в капли.

Теория[править | править код]

Пояснение возникновения силы поверхностного натяжения. Молекулы на границе раздела испытывают силы, стремящиеся втянуть их в жидкость, так как со стороны газа на них не действуют силы притяжения.

Площадь поверхности[править | править код]

Поверхность жидкости обладает свободной энергией:

где  — коэффициент поверхностного натяжения,
 — полная площадь поверхности жидкости[6].

Так как свободная энергия изолированной системы стремится к минимуму, то жидкость (в отсутствие внешних полей) стремится принять форму, имеющую минимальную площадь поверхности. Таким образом задача о форме жидкости сводится к изопериметрической задаче при заданных дополнительных условиях (начальное распределение, объём и т. п.). Свободная капля стремится принять форму шара, однако при более сложных начальных условиях задача о форме поверхности жидкости становится математически исключительно сложной.

Формула Лапласа[править | править код]

Рассмотрим тонкую жидкую плёнку, толщиной которой можно пренебречь. Стремясь минимизировать свою свободную энергию, плёнка создаёт разность давления с разных сторон. Этим объясняется образование мыльных пузырей: плёнка сжимается до тех пор, пока давление внутри пузыря не будет превышать атмосферное на величину добавочного давления поверхностного натяжения плёнки. Добавочное давление в точке поверхности зависит от средней кривизны в этой точке и задаётся формулой Лапласа:

Здесь  — радиусы главных кривизн в точке. Они имеют одинаковый знак, если соответствующие центры кривизны лежат по одну сторону от касательной плоскости в точке, и разный знак — если по разную сторону. Например, для сферы центры кривизны в любой точке поверхности совпадают с центром сферы, поэтому:

Для случая поверхности кругового цилиндра радиуса имеем:

Так как должна быть непрерывной функцией на поверхности плёнки, поэтому выбор «положительной» стороны плёнки в одной точке локально однозначно задаёт положительную сторону поверхности в достаточно близких её точках.

Из формулы Лапласа следует, что свободная мыльная плёнка, натянутая на рамку произвольной формы и не образующая пузырей, будет иметь среднюю кривизну, равную 0.

Зависимость от температуры[править | править код]

С увеличением температуры величина поверхностного натяжения уменьшается и равна нулю при критической температуре. Наиболее известная эмпирическая зависимость поверхностного натяжения от температуры была предложена Лорандом Этвёшом, так называемое правило Этвёша. В настоящее время получен вывод теоретической зависимости поверхностного натяжения от температуры в области до критических температур, подтверждающей правило Этвёша[7].

Способы определения[править | править код]

Способы определения поверхностного натяжения делятся на статические и динамические. В статических методах поверхностное натяжение определяется у сформировавшейся поверхности, находящейся в равновесии. Динамические методы связаны с разрушением поверхностного слоя. В случае измерения поверхностного натяжения растворов (особенно полимеров или ПАВ) следует пользоваться статическими методами. В ряде случаев равновесие на поверхности может наступать в течение нескольких часов (например, в случае концентрированных растворов полимеров с высокой вязкостью). Динамические методы могут быть применены для определения равновесного поверхностного натяжения и динамического поверхностного натяжения. Например, для раствора мыла после перемешивания поверхностное натяжение 58 мДж/м², а после отстаивания — 35 мДж/м². То есть поверхностное натяжение меняется. До установления равновесного оно будет динамическое.

Статические методы:

  1. Метод измерения высоты поднятия мениска в капилляре.
  2. Метод Вильгельми.
  3. Метод лежачей капли.
  4. Метод определения по форме висячей капли.
  5. Метод вращающейся капли.

Динамические методы:

  1. Метод дю Нуи (метод отрыва кольца).
  2. Сталагмометрический, или метод счета капель.
  3. Метод максимального давления пузырька.
  4. Метод осциллирующей струи.
  5. Метод стоячих волн.
  6. Метод бегущих волн.

Методы[править | править код]

Полностью стандартизованные методы измерений описываются в соответствующих ASTM, ГОСТ и т. д.

Метод вращающейся капли[править | править код]

Сущностью метода является измерение диаметра капли жидкости, вращающейся в более тяжелой жидкости[8]. Этот способ измерения годится для измерения низких или сверхнизких значений межфазного натяжения. Он широко применяется для микроэмульсий, измерения эффективности поверхностно-активных веществ (ПАВ) в нефтедобыче, а также для определения адсорбционных свойств.

Метод Дю Нуи (метод отрыва кольца)[править | править код]

Метод является классическим. Сущность метода вытекает из названия. Кольцо из платиновой проволоки плоскость которого параллельна поверхности жидкости медленно поднимают из жидкости, смачивающей его, усилие в момент отрыва кольца от поверхности и есть сила поверхностного натяжения и может быть пересчитано в поверхностную энергию. Метод подходит для измерения поверхностного натяжения ПАВ, трансформаторных масел и т. д.

Метод капиллярных волн[править | править код]

При возмущении жидкости колеблющейся пластиной, лежащей на её поверхности, по поверхности жидкости распространяются капиллярные волны. Если осветить кювету с жидкостью импульсным источником света (стробоскопом) с частотой вспышек равной частоте колебания пластины возмущения, то будет наблюдаться зрительно неподвижная волновая картина. По измеренной длине волны можно рассчитать величину поверхностного натяжения по формуле:

где  — поверхностное натяжение;
 — плотность жидкости;
 — длина волны;
 — частота колебания пластины;
 — ускорение свободного падения.

Поверхностное натяжение некоторых жидкостей на границе с воздухом[править | править код]

Вещество Температура °C Поверхностное натяжение(10−3 Н/м)
Хлорид натрия 6 M водный раствор 20 82,55
Хлорид натрия 801 115
Глицерин 30 64,7
Олово 400 518
Азотная кислота 70 % 20 59,4
Анилин 20 42,9
Ацетон 20 23,7
Бензол 20 29,0
Вода 20 72,86
Глицерин 20 59,4
Нефть 20 26
Ртуть 20 486,5
Серная кислота 85 % 20 57,4
Спирт этиловый 20 22,8
Уксусная кислота 20 27,8
Эфир этиловый 20 16,9
Раствор мыла 20 43

Проявления[править | править код]

Silk-film.png Внешние видеофайлы
Silk-film.png Видео, демонстрирующее передвижение водомерки по поверхности воды за счёт поверхностного натяжения.

См. также[править | править код]

Ссылки[править | править код]

Примечания[править | править код]

  1. Сумм Б. Д. Основы коллоидной химии
  2. (Cтатья: Журнал физической химии. 1983, № 10, с. 2528—2530)
  3. Хайдаров Г. Г., Хайдаров А. Г., Машек А. Ч. Физическая природа поверхностного натяжения жидкости // Вестник Санкт-Петербургского университета. Серия 4 (Физика, химия) 2011. Выпуск 1. с.3-8. (недоступная ссылка). Дата обращения 16 февраля 2014. Архивировано 22 февраля 2014 года.
  4. Хайдаров Г. Г., Хайдаров А. Г., Машек А. Ч., Майоров Е. Е. Влияние температуры на поверхностное натяжения // Вестник Санкт-Петербургского университета. Серия 4 (Физика, химия). 2012. Выпуск 1. с.24-28. (недоступная ссылка). Дата обращения 16 февраля 2014. Архивировано 22 февраля 2014 года.
  5. Weisskopf V. F. American Journal of Physics 53 (1985) 19-20.; V. F. Weisskopf, American Journal of Physics 53 (1985) 618—619.
  6. Обратите внимание, что плёнка, вроде стенки мыльного пузыря, имеет две стороны, так что площадь поверхности жидкости в два раза больше площади плёнки.
  7. Журнал «Вестник Санкт-Петербургского университета», 2012, вып. 1, с. 24—28
  8. Тензиометр SITE100