Построение с помощью циркуля и линейки

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Построе́ния с по́мощью ци́ркуля и лине́йки — раздел евклидовой геометрии, известный с античных времён.

В задачах на построение циркуль и линейка предполагаются идеальными инструментами, в частности:

  • Линейка не имеет делений и имеет сторону бесконечной длины, но только одну.
  • Циркуль может иметь какой угодно большой или малый раствор (то есть может чертить окружность произвольного радиуса).

Примеры[править | править вики-текст]

Разбиение отрезка пополам

Задача на бисекцию. С помощью циркуля и линейки разбить данный отрезок AB на две равные части. Одно из решений показано на рисунке:

  • Циркулем проводим окружности с центром в точках A и B радиусом AB.
  • Находим точки пересечения P и Q двух построенных окружностей (дуг).
  • По линейке проводим отрезок или линию, проходящую через точки P и Q.
  • Находим искомую середину отрезка AB — точку пересечения AB и PQ.

Формальное определение[править | править вики-текст]

В задачах на построение рассматриваются множество следующих объектов: все точки плоскости, все прямые плоскости и все окружности плоскости. В условиях задачи изначально задается (считается построенными) некоторое множество объектов. К множеству построенных объектов разрешается добавлять (строить):

  1. произвольную точку;
  2. произвольную точку на заданной прямой;
  3. произвольную точку на заданной окружности;
  4. точку пересечения двух заданных прямых;
  5. точки пересечения/касания заданной прямой и заданной окружности;
  6. точки пересечения/касания двух заданных окружностей;
  7. произвольную прямую, проходящую через заданную точку
  8. прямую, проходящую через две заданные точки;
  9. произвольную окружность с центром в заданной точке
  10. произвольную окружность с радиусом, равным расстоянию между двумя заданными точками.
  11. окружность с центром в заданной точке и с радиусом, равным расстоянию между двумя заданными точками.

Требуется с помощью конечного количества этих операций построить другое множество объектов, находящееся в заданном соотношении с исходным множеством.

Решение задачи на построение содержит в себе три существенные части:

  1. Описание способа построения заданного множества.
  2. Доказательство того, что множество, построенное описанным способом, действительно находится в заданном соотношении с исходным множеством. Обычно доказательство построения производится как обычное доказательство теоремы, опирающееся на аксиомы и другие доказанные теоремы.
  3. Анализ описанного способа построения на предмет его применимости к разным вариантам начальных условий, а также на предмет единственности или неединственности решения, получаемого описанным способом.

Известные задачи[править | править вики-текст]

  • Задача Аполлония о построении окружности, касающейся трех заданных окружностей. Если ни одна из заданных окружностей не лежит внутри другой, то эта задача имеет 8 существенно различных решений.
  • Задача Брахмагупты о построении вписанного четырехугольника по четырем его сторонам.

Построение правильных многоугольников[править | править вики-текст]

Построение правильного пятиугольника

Античным геометрам были известны способы построения правильных n-угольников для , , и .

В 1796 году Гаусс показал возможность построения правильных n-угольников при , где  — различные простые числа Ферма. В 1836 году Ванцель доказал, что других правильных многоугольников, которые можно построить циркулем и линейкой, не существует.

Неразрешимые задачи[править | править вики-текст]

Следующие три задачи на построение были поставлены ещё древними греками:

Лишь в XIX веке было строго доказано, что все эти три задачи неразрешимы при использовании только циркуля и линейки. Доказательство неразрешимости этих задач построения было достигнуто с помощью алгебраических методов, основанными на теории Галуа.[1] В частности, невозможность построения квадратуры круга следует из трансцендентности числа π.

Другая известная и неразрешимая с помощью циркуля и линейки задача — построение треугольника по трём заданным длинам биссектрис[2]. Интересно, что эта задача остаётся неразрешимой даже при наличии инструмента, выполняющего трисекцию угла[3].

Допустимые отрезки для построения с помощью циркуля и линейки[править | править вики-текст]

Построение квадратного корня из 2.
Построение квадратного корня из 3.
Построение среднего геометрического двух отрезков. Из подобия треугольников следует:

С помощью этих инструментов возможно построение отрезка, который по длине:

  1. равен сумме длин нескольких отрезков;
  2. равен разности длин двух отрезков;
  3. численно равен произведению длин двух отрезков;
  4. численно равен частному от деления длин двух отрезков;
  5. численно равен квадратному корню из длины заданного отрезка (следует из возможности построения среднего геометрического двух отрезков, см. иллюстрацию).[4]

Для построения отрезка с длиной численно равной произведению, частному и квадратному корню из длин заданных отрезков необходимо задание на плоскости построения единичного отрезка (то есть отрезка длины 1). Извлечение корней из отрезков с иными натуральными степенями, не являющимися степенью числа 2, невозможны с помощью циркуля и линейки. Так, например, невозможно при помощи циркуля и линейки из единичного отрезка построить отрезок длиной . Из этого факта, в частности, следует неразрешимость задачи об удвоении куба.[5]

Возможные и невозможные построения[править | править вики-текст]

С формальной точки зрения, решение любой задачи на построение сводится к графическому решению некоторого алгебраического уравнения, причем коэффициенты этого уравнения связаны с длинами заданных отрезков. Поэтому можно сказать, что задача на построение сводится к отысканию действительных корней некоторого алгебраического уравнения.

Поэтому удобно говорить о построении числа — графического решения уравнения определенного типа.

Исходя из возможных построений отрезков возможны следующие построения:

Иначе говоря, возможно строить лишь отрезки, равные арифметическим выражениям с использованием квадратного корня из исходных чисел (заданных длин отрезков).

Важно отметить, что существенно, что решение должно выражаться при помощи квадратных корней, а не радикалов произвольной степени. Если даже алгебраическое уравнение имеет решение в радикалах, то из этого не следует возможность построения циркулем и линейкой отрезка, равного его решению. Простейшее такое уравнение: связанное со знаменитой задачей на удвоение куба, сводящаяся к этому кубическому уравнению. Как было сказано выше, решение этого уравнения () невозможно построить циркулем и линейкой.

Возможность построить правильный 17-угольник следует из выражения для косинуса центрального угла его стороны:

что, в свою очередь, следует из возможности сведения уравнения вида где  — любое простое число Ферма, с помощью замены переменной к квадратному уравнению.

Вариации и обобщения[править | править вики-текст]

  • Построения с помощью одного циркуля. По теореме Мора — Маскерони с помощью одного циркуля можно построить любую фигуру, которую можно построить циркулем и линейкой. При этом прямая считается построенной, если на ней заданы две точки.
  • Построения с помощью одной линейки. Очевидно, что с помощью одной линейки можно проводить только проективно-инвариантные построения. В частности,
    • невозможно даже разбить отрезок на две равные части,
    • также невозможно найти центр данной окружности.
Однако,
  • при наличии на плоскости заранее проведённой окружности с отмеченным центром с одной линейкой можно провести те же построения, что и циркулем и линейкой (теорема Штейнера — Понселе).
  • Если на линейке есть две засечки, то построения с её помощью эквивалентны построениям с помощью циркуля и линейки (важный шаг в доказательстве этого сделал Наполеон).
  • Построения с помощью инструментов с ограниченными возможностями. В задачах такого рода инструменты (в противоположность классической постановке задачи) считаются не идеальными, а ограниченными: прямую через две точки с помощью линейки можно провести только при условии, что расстояние между этими точками не превышает некоторой величины; радиус окружностей, проводимых с помощью циркуля, может быть ограничен сверху, снизу или одновременно и сверху, и снизу.
  • Построения с помощью плоского оригами см. правила Фудзиты
  • Построения с помощью шарнирных механизмов (англ.) — это построения на плоскости и в пространстве с помощью единичных стержней, связанных на концах шарнирами. Этим способом можно построить любое алгебраическое число[6].

Интересные факты[править | править вики-текст]

См. также[править | править вики-текст]

  • Программные пакеты динамической геометрии позволяют выполнять виртуальные построения с помощью циркуля и линейки на мониторе компьютера.

Примечания[править | править вики-текст]

Литература[править | править вики-текст]