Поступательное движение

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Рис 1.Поступательное движение тела на плоскости слева-направо, с произвольно выделенным в нём отрезком AB. Вначале прямолинейное, затем — криволинейное, переходящее во вращение каждой точки вокруг своего центра с равными для данного момента угловыми скоростями и равными значениями радиуса поворота. Точки O — мгновенные центры поворота вправо. R — их равные для каждого конца отрезка, но различные для разных моментов времени мгновенные радиусы поворота.

Поступательное движение — это механическое движение системы точек (абсолютно твёрдого тела), при котором отрезок прямой, связывающий две любые точки этого тела, форма и размеры которого во время движения не меняются, остаётся параллельным своему положению в любой предыдущий момент времени[1].

Приведённая иллюстрация показывает, что вопреки распространённому утверждению[2], поступательное движение не является противоположностью движению вращательному, а в общем случае может рассматриваться как совокупность поворотов — не закончившихся вращений. При этом подразумевается, что прямолинейное движение есть поворот вокруг бесконечно удалённого от тела центра поворота.

В общем случае поступательное движение происходит в трёхмерном пространстве, но его основная особенность — сохранение параллельности любого отрезка самому себе, остаётся в силе.

Математически поступательное движение по своему конечному результату эквивалентно параллельному переносу.Однако, рассматриваемое как физический процесс, оно представляет собой в трёхмерном пространстве вариант винтового движения (См. Рис. 2)

Примеры поступательного движения[править | править код]

Поступательно движется, например, кабина лифта. Также, в первом приближении, поступательное движение совершает кабина колеса обозрения. Однако, строго говоря, движение кабины колеса обозрения нельзя считать поступательным.

В соответствии с первым и вторым законами Ньютона кабина, стремясь сохранить направление своего движения, отклоняется от вертикальной прямой, причём в разном направлении по разные стороны от оси симметрии колеса обозрения. Таким образом, не всякая прямая, связанная с кабиной, перемещается параллельно самой себе. Причём отклонение кабины от вертикальной прямой, и соответственно, отклонение траектории движения кабины от траектории поступательного движения тем больше, чем больше частота вращения колеса обозрения. Учитывая, что реальные частоты вращения колёс обозрения достаточно малы, траектории движения их кабин весьма близки к траектории поступательного движения. Этим можно объяснить, что во многих источниках движение кабины приводится в качестве примера поступательного движения.

Моделью поступательного движения в первом приближении (если пренебречь качанием ступни) является педаль велосипеда, совершающая при этом за полный цикл своего хода один поворот вокруг своей оси.

Связь движения тела и движения его точек[править | править код]

Если тело движется поступательно, то для описания его движения достаточно описать движение произвольной его точки (например, движение центра масс тела).

Одной из важнейших характеристик движения точки является её траектория, в общем случае представляющая собой пространственную кривую, которую можно представить в виде сопряжённых дуг различного радиуса, исходящего каждый из своего центра, положение которого может меняться во времени. В пределе и прямая может рассматриваться как дуга, радиус которой равен бесконечности.

Рис.2 Пример Трёхмерного поступательного движения тела

В таком случае оказывается, что при поступательном движении в каждый заданный момент времени любая точка тела совершает поворот вокруг своего мгновенного центра поворота, причём длина радиуса в данный момент одинакова для всех точек тела. Одинаковы по величине и направлению и векторы скорости точек тела, а также испытываемые ими ускорения.

При решении задач теоретической механики бывает удобно рассматривать движение тела как сложение движения центра масс тела и вращательного движения самого тела вокруг центра масс (это обстоятельство принято во внимание при формулировке теоремы Кёнига).

Примеры устройств[править | править код]

Торговые весы, чашки которых движутся поступательно, но не прямолинейно

Принцип поступательного движения реализован в чертёжном приборе — пантографе, ведущее и ведомое плечо которого всегда остаются параллельными, то есть движутся поступательно. При этом любая точка на движущихся частях совершает в плоскости заданные движения, каждая вокруг своего мгновенного центра вращения с одинаковой для всех движущихся точек прибора угловой скоростью.

Существенно, что ведущее и ведомое плечо прибора, хотя и движущиеся согласно, представляют собой два разных тела. Поэтому радиусы кривизны, по которым движутся заданные точки на ведущем и ведомом плече могут быть сделаны неодинаковыми, и именно в этом и заключается смысл использования прибора, позволяющего воспроизводить любую кривую на плоскости в масштабе, определяемым отношением длин плеч.

По сути дела пантограф обеспечивает синхронное поступательное движение системы двух тел: «читающего» и «пишущего», движение каждого из которых иллюстрируется приведённым выше чертежом.

См. также[править | править код]

Примечания[править | править код]

  1. По определению некое тело называется меняющим свою форму, если расстояние между его точками не остаётся постоянным. С таким телом нельзя связать никакого постоянного по длине отрезка, неизменно ориентированного в пространстве. И потому поступательно двигающееся тело можно считать (кинематически) абсолютно твёрдым, хотя это может быть и жидкая капля и газовое облако и звёздное скопление
  2. Физический энциклопедический словарь/ Гл. ред. А. М. Прохоров. Ред.кол. Д. М. Алексеев, А. М. Бонч-Бруевич,А. С. Боровик-Романов и др. -М.: Сов.энциклопедия, 1983.-323 с.,ил, 2 л.цв.ил. страница 282.

Литература[править | править код]

  • Ньютон И. Математические начала натуральной философии. Пер. и прим. А. Н. Крылова. М.: Наука, 1989
  • С. Э. Хайкин. Силы инерции и невесомость. М.: «Наука», 1967 г. Ньютон И. Математические начала натуральной философии. Пер. и прим. А. Н. Крылова.
  • Фриш С. А. и Тиморева А. В. Курс общей физики, Учебник для физико-математических и физико-технических факультетов государственных университетов, Том I. М.: ГИТТЛ, 1957

Ссылки[править | править код]