Предварение равноденствий

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Прецессия земной оси

Предварение равноденствий (лат. praecessio aequinoctiorum) — историческое название для постепенного смещения точек весеннего и осеннего равноденствий (то есть точек пересечения небесного экватора с эклиптикой) навстречу видимому годичному движению Солнца. Другими словами, каждый год весеннее равноденствие наступает немного раньше, чем в предыдущем году — примерно на 20 минут 24 секунды[1]. В угловых единицах смещение составляет сейчас примерно 50,3" в год, или 1 градус каждые 71,6 лет[2]. Это смещение является периодическим, и примерно каждые 26000 лет точки равноденствия возвращаются на прежние места.

Причины[править | править вики-текст]

Прецессия волчка
Анимация прецессии земной оси (вид с северного полюса эклиптики)

Основная причина предварения равноденствий — прецессия, периодическое изменение направления земной оси под влиянием притяжения Луны, а также (в меньшей степени) Солнца. Как указал Ньютон в своих «Началах», сплюснутость Земли вдоль оси вращения приводит к тому, что гравитационное притяжение тел солнечной системы вызывает прецессию земной оси[3]; позже выяснилось, что к аналогичным последствиям приводит неоднородность плотности распределения масс внутри Земли. Величина прецессии пропорциональна массе возмущающего тела и обратно пропорциональна кубу расстояния до него; чем быстрее вращается прецессирующее тело, тем меньше скорость его прецессии[4].

В результате прецессии земная ось описывает в пространстве конус. Поворот земной оси смещает и связанную с Землёй экваториальную систему небесных координат относительно удалённых, практически неподвижных на небесной сфере звёзд. На небесной сфере ось описывает окружность так называемого малого круга небесной сферы с центром в северном полюсе эклиптики для северного полушария и в южном полюсе эклиптики — для южного полушария, с угловым радиусом примерно 23,5 градуса[5]. Полный оборот по этой окружности происходит с периодом (по современным данным) примерно 25 800 лет. Существуют и другие причины смещения земной оси, в первую очередь — нутация, периодическое, быстрое относительно периода прецессии «покачивание полюсов». Период нутации земной оси равен 18,61 лет, и её амплитуда составляет около 17" (угловых секунд). При этом на угол наклона земной оси к плоскости эклиптики прецессия (в отличие от нутации) не влияет[6]

Кроме Луны и Солнца, прецессионное смещение вызывают и другие планеты, но оно невелико, в сумме примерно 0,1" в год и направлено противоположно лунно-солнечной прецессии[5][4]. Имеются и другие факторы, возмущающие направление земной оси — апериодическое «блуждание полюсов[en]», изменения океанических течений, движение атмосферных масс, сильные землетрясения, изменяющие форму геоида и т. п., однако их вклад в смещение земной оси по сравнению с прецессией и нутацией ничтожен.

Аналогичные явления происходят и на других планетах. Например, ось Юпитера под влиянием его многочисленных спутников и Солнца смещается примерно на полградуса в течение юпитерианского года[4].

Последствия[править | править вики-текст]

Смещение северного полюса мира

Поворот оси нашей планеты имеет разнообразные последствия. Прежде всего, он сокращает продолжительность тропического года, измеряемого от равноденствия до равноденствия; тропический год, таким образом, становится на 20 минут короче звёздного. Поскольку долготы звёзд отсчитываются от точки равноденствия, они постепенно увеличиваются — именно этот эффект и привёл к открытию данного явления[4].

В ходе прецессии вид звёздного неба, видимый в тех или иных широтах, меняется, так как меняются склонения тех или иных созвездий, и даже время года их наблюдения. Некоторые созвездия, видимые сейчас в средних широтах северного полушария Земли (например, Орион и Большой Пёс), постепенно опускаются под горизонт и через несколько тысяч лет будут почти недоступны для этих широт, зато на северном небе появятся созвездия Центавр, Южный Крест и ряд других. Конечно, не все созвездия южного полушария будут доступны в результате прецессии — выше всех поднимется современное «летнее» небо, меньше — «осеннее» и «весеннее», зимнее небо, наоборот, опустится, так как в настоящее время оно максимально «поднято»[4].

Схожие процессы будут и в Южном полушарии. Многие созвездия Северного полушария, которые в настоящее время не показываются в Южном, станут там видны, причём выше всего поднимется современное «зимнее» небо, которое видно из Южного полушария как летнее. Например, спустя 6 тысяч лет будет доступно из средних широт Южного полушария для наблюдения созвездие Большая Медведица, а 6 тысяч лет назад там была видна Кассиопея[4].

Полюс мира сейчас почти совпадает с Полярной звездой. В древнем Египте он находился вблизи звезды ТубанДракона). После 2103 года полюс начнёт удаляться от Полярной звезды и в V тысячелетии перейдёт в созвездие Цефея[5][4].

О влиянии на климат Земли астрономических факторов (прецессии, изменения эксцентриситета орбиты, положения перигелия) — см. Циклы Миланковича.

Исторический очерк[править | править вики-текст]

На основании некоторых косвенных данных предполагают, что различие между звёздным и тропическим годом (простым логическим следствием чего является движение точек равноденствия на фоне звёзд) впервые установил в III веке до н. э. Аристарх Самосский. Разность между звёздным и тропическим годом, вычисленная на основании этих данных, соответствует скорости прецессии 1° за 100 лет, или 36" в год[7] (по современным данным, 1° за 71,6 года).

Наружные сферы в теории Птолемея, отвечающие за суточное вращение неба и прецессию

Исходя из наблюдений звёзд, предварение равноденствий было открыто выдающимся древнегреческим астрономом Гиппархом во II веке до н. э.. В его распоряжении были результаты наблюдений греческого астронома III века до н. э. Тимохариса, из которых Гиппарх обнаружил, что все долготы звёзд увеличиваются примерно (по его оценке) на 1° каждые 100 лет. Во II веке н. э. существование прецессии подтвердил Клавдий Птолемей, причём скорость прецессии по его данным составляла всё те же 1° в 100 лет.

Большинство астрономов доптолемеева периода полагали, что все звёзды закреплены на одной сфере (сфере неподвижных звёзд), являющейся границей Вселенной. Видимое суточное вращение небосвода при этом считалось отражением вращения этой сферы вокруг своей оси — оси мира. Для объяснения прецессии Птолемей был вынужден ввести за пределами сферы неподвижных звёзд (на рисунке слева обозначена цифрой 1) ещё одну сферу, которая вращается с периодом в одни сутки вокруг оси мира (NS). К ней прикреплена сфера неподвижных звёзд 2, вращающаяся с периодом прецессии вокруг оси AD, перпендикулярной плоскости эклиптики. Таким образом, вращение сферы звёзд есть суперпозиция двух вращений, суточного и прецессионного. Наконец, внутрь этой сферы вложена ещё одна сфера 3, вращающаяся вокруг той же оси AD, но в противоположном направлении, что компенсирует прецессионное движение для всех внутренних сфер (но эта сфера по-прежнему принимает участие в суточном вращении)[8].

Теон Александрийский, комментатор Птолемея (IV век), выдвинул гипотезу, что сфера неподвижных звёзд испытывает периодические колебания в пределах 8°, после чего возвращается в прежнее положение. Это явление было названо трепидацией. В IX веке эту модель поддержал знаменитый арабский астроном Сабит ибн Курра[9] [10]. Уже арабские астрономы более позднего времени показали, что прецессия носит монотонный характер. Тем не менее, они полагали, что скорость прецессии периодически изменяется, так что изменение долгот звезд можно разложить на две составляющие: равномерное увеличение (собственно прецессия), на которое наложено периодическое колебание (трепидация). Такой точки зрения придерживался, в том числе, Николай Коперник, и лишь Тихо Браге доказал полное отсутствие трепидации[4].

Коперник первым понял, что смещается не небесный экватор, а земная ось, и получил скорость прецессии, близкую к современным представлениям - 1° за 72 года. Причина смещения была подробно объяснена в «Началах» Ньютона, причём Ньютон с хорошей точностью оценил величину прецессии (50 угловых секунд за год) и отдельно выделил вклад в эту величину Луны и Солнца[3]. В математической модели Ньютона Земля была мысленно разделена на шарообразную часть и кольцеобразное экваториальное утолщение; из открытых Ньютоном законов механики следовало, что притяжение Луны создаёт для утолщения дополнительный момент силы, приводящий к повороту земной оси. Этот момент силы наиболее велик тогда, когда Луна максимально удалена от плоскости земного экватора. Аналогичный механизм действует со стороны Солнца[5][4]. Рассуждения Ньютона были принципиально верны, однако его математическая модель содержала неточности, так как плотность Земли не является постоянной.

В XVIII веке большой вклад в изучение вопроса внёс [Д’Аламбер, Жан Лерон|Даламбер]], который в своём труде «Исследование предварения равноденствий» (Recherches sur la precession des equinoxes, 1749) исправил и развил модель Ньютона. В XIX веке теорию прецессии в основном завершили Фридрих Вильгельм Бессель и Отто Вильгельм Струве[4].

Ведущий американский астроном Саймон Ньюком в 1896 году дал формулу прецессии, которая показывала и скорость изменения её величины[2]:

     Здесь T — число лет, прошедших после 1900 года.

В 1976 году XVI съезд Международного астрономического союза в Гренобле уточнил формулу Ньюкома и принял за новую базу 2000 год[2]:

     Здесь T — число лет, прошедших после 2000 года.

См. также[править | править вики-текст]

Примечания[править | править вики-текст]

  1. Михайлов А. А., 1978, Глава «Почему изменяется склонение звезд?».
  2. 1 2 3 Михайлов А. А., 1978, Глава «Как измерить прецессию?».
  3. 1 2 Еремеева А. И., Цицин Ф. А., 1989, с. 183.
  4. 1 2 3 4 5 6 7 8 9 10 ЭСБЕ.
  5. 1 2 3 4 Михайлов А. А., 1978, Глава «Всегда ли Полярная останется Полярной».
  6. Basics of Space Flight, Chapter 2. Jet Propulsion Laboratory/NASA (29 октября 2013). Проверено 26 марта 2015.
  7. Rawlins D. Continued-Fraction Decipherment: Ancestry of Ancient Yearlengths & (pre-Hipparchan) Precession (англ.) // DIO: The International Journal of Scientific History. — 1999. — Vol. 9.1. — P. 31—38.
  8. Evans J. The History and Practice of Ancient Astronomy. — New York: Oxford University Press, 1998.
  9. Рожанская М. М., 1976.
  10. Куртик Г. Е., 1986.

Литература[править | править вики-текст]

Ссылки[править | править вики-текст]