Призма (геометрия)

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Призма

Призма (от др.-греч. πρίσμα (лат. prisma) «нечто отпиленное») — многогранник, две грани которого являются конгруэнтными (равными) многоугольниками, лежащими в параллельных плоскостях, а остальные грани — параллелограммами, имеющими общие стороны с этими многоугольниками. Эти параллелограммы называются боковыми гранями призмы, а оставшиеся два многоугольника называются её основаниями.

Призма является разновидностью цилиндра (в общем смысле).

Элементы призмы[править | править вики-текст]

Название Определение Обозначения на чертеже Чертеж
Основания Две грани, являющиеся конгруэнтными многоугольниками, лежащими в параллельных плоскостях. ,
Призма
Боковые грани Все грани, кроме оснований. Каждая боковая грань обязательно является параллелограммом. , , , ,
Боковая поверхность Объединение боковых граней.
Полная поверхность Объединение оснований и боковой поверхности.
Боковые ребра Общие стороны боковых граней. , , , ,
Высота Отрезок, соединяющий плоскости, в которых лежат основания призмы и перпендикулярный этим плоскостям.
Диагональ


Отрезок, соединяющий две вершины призмы, не принадлежащие одной грани.
Диагональная плоскость Плоскость, проходящая через боковое ребро призмы и диагональ основания.
Диагональное сечение Пересечение призмы и диагональной плоскости. В сечении образуется параллелограмм, в том числе его частные случаи — ромб, прямоугольник, квадрат.
Перпендикулярное (ортогональное) сечение Пересечение призмы и плоскости, перпендикулярной её боковому ребру.

Свойства призмы[править | править вики-текст]

  • Основания призмы являются равными многоугольниками.
  • Боковые грани призмы являются параллелограммами.
  • Боковые ребра призмы параллельны и равны.
  • Объём призмы равен произведению её высоты на площадь основания:
  • Площадь полной поверхности призмы равна сумме площади её боковой поверхности и удвоенной площади основания.
  • Площадь боковой поверхности произвольной призмы , где  — периметр перпендикулярного сечения,  — длина бокового ребра.
  • Площадь боковой поверхности прямой призмы , где  — периметр основания призмы,  — высота призмы.
  • Перпендикулярное сечение перпендикулярно ко всем боковым рёбрам призмы.
  • Углы перпендикулярного сечения — это линейные углы двугранных углов при соответствующих боковых рёбрах.
  • Перпендикулярное сечение перпендикулярно ко всем боковым граням.

Виды призм[править | править вики-текст]

Призма, основанием которой является параллелограмм, называется параллелепипедом.
Прямая призма — это призма, у которой боковые ребра перпендикулярны плоскости основания. Другие призмы называются наклонными.
Правильная призма — это прямая призма, основанием которой является правильный многоугольник. Боковые грани правильной призмы — равные прямоугольники.
Правильная призма, боковые грани которой являются квадратами (высота которой равна стороне основания), является полуправильным многогранником.

См. также[править | править вики-текст]

Ссылки[править | править вики-текст]