Прикладная математика

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску

Прикладна́я матема́тика — область математики, рассматривающая применение математических методов, алгоритмов в других областях науки и техники. Примерами такого применения будут: численные методы, математическая физика, линейное программирование, оптимизация и исследование операций, моделирование сплошных сред (Механика сплошных сред), биоматематика и биоинформатика, теория информации, теория игр, теория вероятностей и статистика, финансовая математика и актуарные расчёты, криптография, а следовательно комбинаторика и в некоторой степени конечная геометрия, теория графов в приложении к сетевому планированию, и во многом то, что называется информатикой. В вопросе о том, что является прикладной математикой, нельзя составить чёткую логическую классификацию. Математические методы обычно применяются к специфическому классу прикладных задач путём составления математической модели.

По ироническому утверждению В. И. Арнольда, разница между чистой и прикладной математикой не научная, а социальная и заключается в том, что чистому математику платят за открытие математических фактов, в то время как прикладному математику платят за решение практических задач. Арнольд также замечает, что в России почти каждый математик сочетал «чистую» и «прикладную» математику.

История[править | править код]

Численное решение уравнения теплопроводности на модели корпуса насоса с использованием метода конечных элементов.

Исторически, прикладная математика состояла в основном из прикладного анализа, прежде всего теории дифференциальных уравнений; теории приближений (в широком смысле, включающей асимптотические методы, вариационные методы и численный анализ); и прикладная теория вероятности. Эти области математики имели непосредственное отношение к развитию ньютоновской физики, и различие между математиками и физиками не было чётко выражено до середины 19-го века. Это оставило педагогический след в Соединенных Штатах: до начала 20-го века такие предметы, как классическая механика, часто преподавались на факультетах прикладной математики в американских университетах, а не на факультетах физики, а механику жидкости всё ещё преподают на факультетах прикладной математики[1]. В настоящее время финансовая математика преподаётся на математических факультетах в университетах, и считается разделом прикладной математики[2]. Инженерные и компьютерные факультеты традиционно применяют прикладную математику.

Разделы[править | править код]

Механика жидкости часто считается разделом прикладной математики и машиностроения.

Сегодня термин «прикладная математика» используется в более широком смысле. Он включает в себя классические области, отмеченные выше, а также другие области, которые становятся всё более важными в приложениях. Даже такие области, как теория чисел, которые являются частью чистой математики, ныне важны в приложениях (таких как криптография), хотя они, как правило, не считаются частью прикладной математики как таковой. Иногда термин «применимая математика» используется для различия между традиционной прикладной математикой, которая развивалась наряду с физикой, и многими областями математики, которые применимы к современным задачам в современном мире.

Нет единого мнения о том, что представляют собой различные разделы прикладной математики. Классификация затрудняется из-за того, что математика и наука меняются со временем, а также из-за того, что университеты организуют кафедры, курсы и степени. Логическая классификация прикладной математики больше основана на социологии специалистов, использующих математику, чем на вопросе определения точного характера математики.

Сегодня термин «прикладная математика» используется в более широком смысле. Он включает в себя классические области, отмеченные выше, а также другие области, которые становятся всё более важными в приложениях. Даже такие области, как теория чисел, которые являются частью чистой математики, ныне важны в приложениях (таких как криптография), хотя они, как правило, не считаются частью прикладной математики как таковой. Иногда термин «применимая математика» используется для различия между традиционной прикладной математикой, которая развивалась наряду с физикой, и многими областями математики, которые применимы к современным задачам в современном мире.

Многие математики проводят различие между «прикладной математикой», которая связана с математическими методами, и «приложениями математики» в науке и технике. Биолог, использующий популяционную модель и применяющий известную математику, занимается не прикладной математикой, а скорее её применением; однако математические биологи поставили проблемы, которые стимулировали рост чистой математики. Математики Пуанкаре и Арнольд, отрицают существование «прикладной математики» и утверждают, что существуют только «приложения математики». Точно так же нематематики смешивают прикладную математику и приложения математики. Использование и развитие математики для решения производственных задач также называют «промышленной математикой»[2].

Успех современных численных математических методов и программного обеспечения привёл к появлению вычислительной математики, вычислительной науки и вычислительной техники, которые используют высокопроизводительные вычисления для моделирования явлений и решения проблем в науке и технике. Они часто считаются междисциплинарными.

Полезность[править | править код]

Математические финансы связаны с моделированием финансовых рынков.

Исторически, математика была наиболее важной в естественных науках и технике. Однако после Второй мировой войны вне физических наук возникли новые области математики, такие как теория игр и теория социального выбора, которые выросли из экономических задач.

С появлением компьютера появились новые приложения: изучение и использование самой новой компьютерной технологии (информатика) для изучения проблем, возникающих в других областях науки (вычислительная наука), а также математика вычислений (например, теоретическая информатика, компьютерная алгебра, численный анализ ). Статистика, вероятно, является наиболее распространённой математической наукой, используемой в социальных науках, но и другие области математики, особенно экономическая, становятся всё более полезными в этих дисциплинах.

Статус на академических факультетах[править | править код]

Академические учреждения по разному группируют и маркируют курсы, программы и степени по прикладной математике. В некоторых школах есть одно отделение математики, в то время как в других есть отделения прикладной математики и (чистой) математики.

Многие прикладные математические программы (в отличие от кафедр) состоят в основном из перекрестных курсов и совместно назначаемых преподавателей на кафедрах, представляющих приложения. Некоторые программы на степень доктора философии по прикладной математике практически не требуют курсовых работ вне математики, в то время как другие требуют существенной курсовой работы в конкретной области применения. В некотором отношении это различие отражает различие между «применением математики» и «прикладной математикой».

В некоторых университетах Великобритании имеются факультеты прикладной математики и теоретической физики[3][4][5] но в настоящее время гораздо реже встречаются отдельные кафедры чистой и прикладной математики. Заметным исключением из этого является факультет прикладной математики и теоретической физики в Кембриджском университете, на котором существует должность лукасовский профессор математики, которую занимали — Исаак Ньютон, Чарльз Бэббидж, Джеймс Лайтхилл, Пол Дирак и Стивен Хокинг.

Школы с отдельными факультетами прикладной математики варьируются от Университета Брауна, в котором есть крупное отделение прикладной математики, которое предлагает получение степеней через докторантуру, до Университета Санта-Клары, который предлагает только магистр прикладной математики[6]. Исследовательские университеты, разделяющие свои математические факультеты на чистые и прикладные, включают MIT. Университет Бригама Янга также имеет прикладную и вычислительную направленность (ACME), программу, которая позволяет студентам получить высшее образование по математике с акцентом на прикладную математику. Учащиеся этой программы также изучают еще один навык (информатика, инженерия, физика, чистая математика и т. д.) В дополнение к своим прикладным математическим навыкам.

Ассоциированные математические науки[править | править код]

Прикладная математика имеет существенно перекрывается со статистикой.

Прикладная математика тесно связана с другими математическими науками.

Научные вычисления[править | править код]

Научные вычисления включают прикладную математику (особенно численный анализ ), вычислительную технику (особенно высокопроизводительные вычисления ) и математическое моделирование объектов изучаемых научной дисциплиной.

Информатика[править | править код]

Информатика опирается на такие дисциплины, как логику, алгебру, комбинаторику и теорию графов.

Исследование операций и наука управления[править | править код]

Исследование операций и науки управления часто преподаются на факультетах инженерии, бизнеса и государственной политики.

Статистика[править | править код]

Прикладная математика имеет существенное совпадение с дисциплиной статистики. Теоретическая статистика изучает и совершенствует статистические процедуры с помощью математики, а статистические исследования часто поднимают математические вопросы. Статистическая теория опирается на теорию вероятностей и решений и широко использует научные вычисления, анализ и оптимизацию; для планирования экспериментов статистики используют алгебру и комбинаторный дизайн. Прикладные математики и статистики часто работают в отделе математических наук (особенно в колледжах и небольших университетах).

Актуарная наука[править | править код]

Актуарная наука применяет теорию вероятностей, статистику и экономическую теорию для оценки риска в страховании, финансах и других отраслях и профессиях.

Математическая экономика[править | править код]

Математическая экономика — это сфера теоретической и прикладной научной деятельности, целью которой является математически формализованное описание экономических объектов, процессов и явлений. Применяемые методы обычно относятся к нетривиальным математическим методам или подходам. Математическая экономика основана на статистике, вероятности, математическом программировании (а также других вычислительных методах), исследовании операций, теории игр и некоторых методах математического анализа. В этом отношении она напоминает (но отличается от финансовой математики), ещё одну часть прикладной математики.

Применимая математика[править | править код]

Применимая математика является субдисциплиной прикладной математики, хотя нет единого мнения относительно точного определения[7]. Иногда термин «применимая математика» используется для различия между традиционной прикладной математикой, которая развивалась наряду с физикой, и многими областями математики, которые применимы к современным задачам в мире.

Математики часто проводят различие между «прикладной математикой», с одной стороны, и «применением математики» или «применимой математикой» как внутри, так и вне науки и техники, с другой[7]. Некоторые математики подчеркивают термин применимая математика, чтобы отделить или разграничить традиционные прикладные области от новых приложений, возникающих из областей, которые ранее рассматривались как чистая математика[8]. Например, с этой точки зрения эколог или географ, использующий популяционные модели и применяющий известную математику, занимается не прикладной, а скорее применимой, математикой.

Другие авторы предпочитают описывать применимую математику как объединение «новых» математических приложений с традиционными областями прикладной математики[8][9][10]. Таким образом, термины прикладная математика и применимая математика взаимозаменяемы.

Другие дисциплины[править | править код]

Граница между прикладной математикой и конкретными областями применения размыта. Многие университеты преподают математические и статистические курсы за пределами соответствующих факультетов, в таких областях, как бизнес, инженерия, физика, химия, психология, биология, информатика, научные вычисления и математическая физика.

См. также[править | править код]

Примечания[править | править код]

Литература[править | править код]

  1. Мышкис А.Д. Прикладная математика для инженеров. Специальные курсы. — 3-е изд., перер. и доп. — М.: Физматлит, 2006. — 685 с. — ISBN: 978-5-9221-0747-1.
  2. Блехман И.И., Мышкис А.Д., Пановко Я.Г. Механика и прикладная математика. Логика и особенности приложений математики. — М: Наука, 1990, 2-ое изд., испр. и доп, 360 с.
  3. Блехман И.И., Мышкис А.Д., Пановко Я.Г. Прикладная математика: Предмет, логика и особенности подходов. — Киев: Наукова думка, 1976, 270 с. — Первая в мировой литературе книга, посвященная систематическому рассмотрению основных особенностей процесса применения математики к решению прикладных задач. Для студентов старших курсов технических факультетов с усиленной математической подготовкой и молодым специалистам. применяющим математику.
  4. Handbook of Applicable Mathematics, Statistics. Walter Ledermann, Emlyn Lloyd. Wiley, 7 авг. 1984 г. - 580 c.  (англ.)

Ссылки[править | править код]