Пробит-регрессия

Материал из Википедии — свободной энциклопедии
(перенаправлено с «Пробит регрессия»)
Перейти к: навигация, поиск

Про́бит-регрессия (пробит-модель, англ. probit) — применяемая в различных областях (эконометрика, токсикология и др.) статистическая (нелинейная) модель и метод анализа зависимости качественных (в первую очередь — бинарных) переменных от множества факторов, основанная на нормальном распределении (в отличие от, например, аналогичной логит-регрессии, основанной на логистическом распределении). В экономике (эконометрике) пробит-модели (наряду с логит-, гомпит- и др.) используются в моделях бинарного выбора или в моделях множественного выбора между различными альтернативами, для моделирования дефолтов компаний, в страховании жизни - для оценки вероятности смерти в зависимости от возраста и пола и т. д. В токсикологии пробит-регрессия используется для оценки влияния дозы или концентрации тех или иных веществ на биологические объекты.

Пробит-модель позволяет оценить вероятность того, что анализируемая (зависимая) переменная примет значение 1 при заданных значениях факторов (то есть это оценка доли "единиц" при данном значении факторов). В пробит-модели пробит-функция от вероятности моделируется как линейная комбинация факторов (включая константу).Пробит-функцией принято называть функцию, обратную к интегральной функции (CDF) стандартного нормального распределения, то есть функцию, определяющую квантиль стандартного нормального распределения для заданной вероятности .

Термин «probit» как производное от англ. probability unit предложил (впервые использовал) Честер Блисс (Chester Ittner Bliss [1899—1979])[1] в своей статье, посвященной количественному анализу смертельного действия ядов на примере действия никотина на щавелевую тлю (Aphis rumicis L.)[1]. С тех пор метод пробит-анализа особенно популярен в токсикологии. Само использование функции нормального распределения для описания зависимости «доза — эффект» восходит к английскому математику J. W. Trevan который показал, что интенсивность клеточного ответа на данную дозу лекарственного вещества подчиняется распределению Гаусса[2].

Сущность модели[править | править вики-текст]

Пробит-модель является частным случаем модели бинарного выбора в которой используется нормальное распределение. А именно, пусть зависимая переменная является бинарной, то есть может принимать только два значения, которые для упрощения предполагаются равными и . Например, может означать наличие/отсутствие каких либо условий, успех или провал чего-либо, ответ да/нет в опросе и т. д. Пусть также имеется вектор регрессоров (факторов) , которые оказывают влияние на . В пробит-модели предполагается, что вероятность того, что определяется нормальным распределением, таким образом пробит-модель имеет вид:

где  — интегральная функция распределения (CDF) стандартного нормального распределения,  — неизвестные параметры, которые требуется оценить.

Использование именно стандартного нормального распределения не ограничивает общности модели, так как возможное ненулевое среднее учтено в константе, которая обязательно присутствует в числе факторов, а возможная неединичная дисперсия учитывается за счет соответствующего нормирования всех коэффициентов b.

Как и в общем случае модели бинарного выбора в основе модели лежит предположение о наличии некоторой скрытой (не наблюдаемой) переменной , в зависимости от значений которой наблюдаемая переменная принимает значение или :

Предполагается, что скрытая переменная зависит от факторов в смысле обычной линейной регрессии , где случайная ошибка в данном случае имеет стандартное нормальное распределение . Тогда

Последнее равенство следует из симметричности нормального распределения.

Также модель может быть обоснована через полезность альтернатив — не наблюдаемой функции , то есть фактически двух функций и соответственно для двух альтернатив. Функция разности полезностей альтернатив здесь выполняет роль той самой скрытой переменной.

Оценка параметров[править | править вики-текст]

Оценка обычно производится методом максимального правдоподобия. Пусть имеется выборка объёма факторов и зависимой переменной . Для данного номера наблюдения используем индекс . Логарифмическая функция правдоподобия имеет вид:

Максимизация данной функции по неизвестным параметрам позволяет получить состоятельные, асимптотически эффективные и асимптотически нормальные оценки параметров. Последнее означает, что:

где  — асимптотическая ковариационная матрица оценок параметров, которая определяется стандартным для метода максимального правдоподобия способом (через гессиан или градиент логарифмической функции правдоподобия в оптимальной точке):

,

где  — функция плотности вероятности (PDF) стандартного нормального распределения.

Матрица неизвестна и используется её состоятельная оценка:

Обычно оценка модели производится в специализированных (статистических, эконометрических) программных продуктах, например, Statistica, EViews, Matrixer, R[3], SPSS и др.[4], хотя возможна «ручная» оценка, например в MS Office Excel, используя встроенный «Поиск решения» для максимизации логарифмической функции правдоподобия.

Показатели качества и тестирование модели[править | править вики-текст]

Для оценки качества построенной пробит-регрессии применяются стандартные для моделей бинарного выбора статистики:

  • Псевдо-коэффициент детерминации (
  • Коэффициент детерминации МакФаддена (индекс отношения правдоподобия)()
  • Статистика Хосмера-Лемешоу (Hosmer-Lemeshow, ).
  • Статистика Эндрюса (Andrews)

Важное значение имеет анализ доли правильных прогнозов. В частности анализируется доля правильных и (или) неправильных прогнозов для значения каждого из значений зависимой переменной (0 и 1).

Примеры[править | править вики-текст]

Токсикология[править | править вики-текст]

Рассмотрим пробит-модель на примере действия инсектицида на насекомых[5][6]. Зависимой бинарной переменной является переменная, принимающая значение 1, если данное насекомое погибло, и 0 в противном случае. В выборке насекомых реакция на инсектицид одних насекомых не зависит от реакции других. В качестве фактора модели выступает «измеритель» дозы , где -доза инсектицида. Вероятность того, что случайно отобранное из совокупности насекомое погибнет за данное время, равна

.

Если параметры модели и известны (обозначим оценки и соответственно), то уровень дозы , при котором погибает некоторый процент насекомых, находится из уравнения

,

где  — квантиль уровня стандартного нормального распределения.

В частности, для уровня дозы , при которой погибает 50 % насекомых, . Эту величину в токсикологии принято обозначать ЛД50.

Можно также построить приблизительный доверительный интервал для следующим образом: . Дисперсию можно оценить приблизительно следующим образом:

,

где  — оценка дисперсии оценок параметров модели,  — оценка ковариации между оценками параметров.

Более точный доверительный интервал можно оценить исходя теоремы Феллера, в соответствии с которой 95%-е доверительные границы для являются корнями , квадратного уравнения

,

где  — 95%-я точка распределения Стьюдента.

Вариации и обобщения[править | править вики-текст]

На практике встречаются ситуации, когда необходимо исследовать не две альтернативы, а несколько альтернатив. Если эти альтернативы неупорядоченные, то говорят о множественной (multinominal) пробит-модели. В случае упорядоченных альтернатив (например, 5-балльная оценка качества услуги или товара) говорят о порядковой или упорядоченной (ordered) пробит-модели.

См. также[править | править вики-текст]

Примечания[править | править вики-текст]

  1. 1 2 Bliss CI. (1934). «The method of probits». Science 79 (2037): 38–39. DOI:10.1126/science.79.2037.38. PMID 17813446.
  2. Trevan, J.W. 1927. The error of determination of toxicity. Proc. Royal Soc. 101B: 483—514. цитировано по Альберт А. Избирательная токсичность. Физико-химические основы терапии. Пер. с англ. В 2 томах. Т. 1. — М: Медицина, 1989, С. 247. ISBN 5-225-01519-0
  3. R Data Analysis Examples — Probit Regression
  4. en:Comparison_of_statistical_packages#Regression
  5. Finney, D.J. Probit Analysis (3rd edition). — Cambridge University Press, Cambridge, UK, 1971. — ISBN 052108041X.
  6. Справочник по прикладной статистике. В 2-х т. Т. 1: Пер. с англ. / Под ред. Э. Ллойда, У. Ледермана, Ю. Н. Тюрина. — М.: Финансы и статистика, 1989. — 510 с. — ISBN 5-279-00245-3

Литература[править | править вики-текст]

  • Магнус Я. Р., Катышев П. К., Пересецкий А. А. Эконометрика. Начальный курс. — М.: Дело, 2007. — 504 с. — ISBN 978-5-7749-0473-0..