Пятиугольник
Пятиугольник — многоугольник с пятью углами. Также пятиугольником называют всякий предмет такой формы.
Площадь пятиугольника без самопересечений[править | править код]
Площадь пятиугольника без самопересечений, заданного координатами вершин, определяется по общей для многоугольников формуле.
Выпуклый пятиугольник[править | править код]
Выпуклым пятиугольником называется пятиугольник, такой, что все его точки лежат по одну сторону от любой прямой, проходящей через две его соседние вершины.
Сумма внутренних углов выпуклого пятиугольника равна 540°.
Любые 9 точек в общем положении содержат вершины выпуклого пятиугольника, и существует множество из 8 точек в общем положении, в котором нет выпуклого пятиугольника[1]. Доказано также, что любые 10 точек на плоскости в общем положении содержат выпуклый пустой пятиугольник, и существует множество из 9 точек в общем положении, в котором нет выпуклого пустого пятиугольника[2].

Правильный пятиугольник[править | править код]
Пентагоном или правильным пятиугольником называется пятиугольник, у которого все стороны и углы равны. Если провести в пентагоне диагонали, то он разобьётся на[3]:
- меньший пентагон (образуеся точками пересечения диагоналей) — в центре
- Вокруг меньшего пентагона — пять равнобедренных треугольников двух видов (с отношением бедра к основанию, равным золотой пропорции):
- 1) имеют острые углы в 36° при вершине и острые углы в 72° при основании
- 2) имеют тупой угол в 108° при вершине и острые углы в 36° при основании
При соединении двух первых и двух вторых треугольников их основаниями получатся два «золотых» ромба (первый имеет острый угол в 36° и тупой угол в 144°). Роджер Пенроуз использовал «золотые» ромбы для конструирования «золотого» паркета (мозаики Пенроуза).
Звездчатые пятиугольники[править | править код]

Многоугольник, у которого все стороны и углы равны, а вершины совпадают с вершинами правильного многоугольника называется звёздчатым. Помимо правильного существует ещё один звёздчатый пятиугольник — пентаграмма.
Пентаграмма, как полагал Пифагор, представляет собой математическое совершенство, поскольку демонстрирует золотое сечение (φ = (1+√5)/2 = 1,618…). Если разделить длину любого цветного отрезка на длину самого длинного из оставшихся меньших отрезков, то будет получено золотое сечение φ.
См. также[править | править код]
Примечания[править | править код]
- ↑ Kalbfleisch, J.D.; Kalbfleisch, J.G. & Stanton, R.G. (1970), A combinatorial problem on convex regions, Proc. Louisiana Conf. Combinatorics, Graph Theory and Computing, vol. 1, Congressus Numerantium, Baton Rouge, La.: Louisiana State Univ., с. 180–188
- ↑ Harborth, Heiko (1978), Konvexe Fünfecke in ebenen Punktmengen, Elem. Math. Т. 33 (5): 116–118
- ↑ Плитки Пенроуза . Дата обращения: 9 февраля 2011. Архивировано 22 сентября 2013 года.
Это заготовка статьи по математике. Помогите Википедии, дополнив её. |