Разложение на ручки

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
Трёхмерный шар с тремя присоединёнными ручками.

Разложение на ручки m-многообразия M — это объединение

где каждое получается из путём присоединения -ручек. Разложение на ручки для многообразия — это то же, что и CW-разбиение в топологическом пространстве — во многих отношениях целью разложения на ручки является язык, аналогичный языку CW-комплексов, но адаптированный к миру гладких многообразий. Таким образом, i-ручка является гладким аналогом i-ячейки. Разложение на ручки многообразий возникают из теории Морса. Модификация структур ручек тесно связана с теорией Серфа.

Предпосылки[править | править код]

Рассмотрим стандартное CW-разбиение n-сферы с одной нулевой ячейкой и одной n-ячейкой. С точки зрения гладких многообразий это является вырожденным разбиением сферы, так как нет естественного пути посмотреть на гладкую структуру глазами этого разбиения, в частности, гладкая структура вблизи 0-ячейки зависит от поведения характеристического отображения в окрестности .

Проблема с CW-разложениями заключается в том, что присоединяемые отображения для ячеек не живут в мире гладких отображений между многообразиями. Зародышевая идея для исправления этого дефекта — теорема о трубчатой окрестности. Если задана точка p на многообразии M, её замкнутая трубчатая окрестность диффеоморфна . Таким образом, мы получаем разбиение M на несвязное объединение и , склеенное по их общей границе. Главный вопрос здесь, является ли это склеивающее отображение диффеоморфизмом. Возьмём гладкую вложенную дугу в , её трубчатая окрестность диффеоморфна . Это позволяет записать как объединение трёх многообразий, склеенных вдоль частей их границ:

  1. дополнение открытой трубчатой окрестности дуги в .

Заметим, что все склеиваемые отображения являются гладкими, в частности, когда мы склеиваем с , отношение эквивалентности образуется путём вложения в , которое гладко по теореме о трубчатой окрестности.

Разложения на ручки ввёл Стивен Смэйл[1]. В его оригинальной формулировке процесс присоединения j-ручки к m-многообразию M предполагает, что осуществляется вложение of в . Пусть . Многообразие (словами, объединение M с j-ручкой вдоль f ) соответствует несвязному объединению и с отождествлением с его образом в , то есть:

где отношение эквивалентности образуется отношением для всех .

Говорят, что многообразие N получается из M присоединением j-ручек, если объединение M с конечным числом j-ручек диффеоморфно N. Определение разложения на ручки тогда как в преамбуле. Таким образом, многообразие имеет разложение на ручки только с 0-ручками, если оно диффеоморфно несвязному объединению шаров. Связное многообразие, содержащее ручки только двух типов (то есть 0-ручки и j-ручки для некоторого фиксированного j) называется телом с ручками.

Терминология[править | править код]

Когда формируется объединение M с j-ручкой

известна как приклеивающая сфера (или подошвенная сфера)[2].

иногда называется оснащением приклеивающей сферы, поскольку оно даёт тривиализацию его нормального расслоения.

является опоясывающей сферой ручки в .

Многообразие, полученное присоединением g k-ручек к диску , является (m, k)-телом с ручками рода g .

Представления кобордизмов[править | править код]

Представление кобордизма ручками состоит из кобордизма W где и восходящего объединения

где M m-мерно, W m+1-мерно, диффеоморфно , а получается из путём присоединения i-ручек. Поскольку разложения на ручки являются для многообразий аналогом разложений на ячейки топологических пространств, представления кобордизмов ручками для многообразий с границами являются аналогом относительных разложений ячеек пар пространств.

С точки зрения теории Морса[править | править код]

Если задана функция Морса на компактном многообразии M без края, таком что критические точки функции f удовлетворяют выполняется

,

тогда для всех j диффеоморфно , где I(j) — индекс критической точки . Индекс I(j) относится к размерности максимального подпространства касательного пространства , где гессиан отрицательно определён.

Если индексы удовлетворяют неравенству , это разложение на ручки многообразия M. Более того, любое многообразие имеет такую функцию Морса, так что они имеют разложения на ручки. Похожим образом, если задан кобордизм с и функция , которая является функцией Морса на внутренности, постоянна на границе и удовлетворяет свойству увеличения индекса, существует порождённое представление ручек кобордизма W.

Если f — функция Морса M, -f также является функцией Морса. Соответствующее разложение на ручки/представление называется двойственным разложением.

Некоторые главные теоремы и наблюдения[править | править код]

  • Разбиение Хегора замкнутого ориентируемого 3-многообразия является разбиением 3-многообразия на объединение двух (3,1)-тел с ручками вдоль их общей границы называется разбиением Хегора для поверхности. Разбиения Хегора возникает для 3-многообразий несколькими естественными путями. Если задано разложение на ручки 3-многообразия, объединение 0- и 1-ручек является (3,1)-телом с ручками и объединение 3- и 2-ручек также даёт (3,1)-тело с ручками (с точки зрения двойственного разбиения), то есть разбиение Хегора. Если 3-многообразие имеет триангуляцию T, существует порождённое разбиение Хегора, где первое (3,1)-тело с ручками — это регулярная окрестность 1-остова , а другое (3,1)-тело с ручками — это регулярная окрестность двойственного 1-остова.
  • Если присоединить две ручки в последовательности , можно изменить порядок присоединения, обеспечивая , то есть это многообразие диффеоморфно многообразию вида для подходящих отображений присоединения.
  • Граница диффеоморфна , разрезанного вдоль оснащённой сферы . Это главная связь между хирургией, ручками и функциями Морса.
  • Как следствие, m-многообразие M является границей m+1-многообразия W тогда и только тогда, когда M может быть получено из хирургией на наборе оснащённых зацеплений в . Например, известно, что любое 3-многообразие ограничивает 4-многообразие (подобным же образом ориентированные спинорные 3-многообразия ограничивают ориентированные и спинорные 4-многообразия соответственно) согласно работе Рене Тома о кобордизмах. Таким образом, любое 3-многообразие может быть получено хирургией на оснащённых зацеплениях на 3-сфере. В ориентированном случае принято сводить эти оснащённые зацепления к оснащённому вложению несвязного объединения окружностей.
  • Теорема о h-кобордизме доказана путём упрощения разложений на ручки гладких многообразий.

См. также[править | править код]

Примечания[править | править код]

  1. Smale, 1962, с. 387–399.
  2. Скорпан, 2016, с. 46.

Литература[править | править код]

  • Smale S. On the structure of manifolds // Amer. J. Math. — 1962. — Т. 84.
    • Статья перепечатана в книге:S. Smale. On the structure of manifolds // Topological library. Part 1: Cobordisms and their applications / Editor-in-charge: Louis H. Kauffman; Editors: S. P. Novikov, I. A. Tairnanov. — World Scientific Publishing Co. Pte. Ltd, 2007. — Т. 39. — (SERIES ON KNOTS AND EVERYTHING). — ISBN 978-981-270-559-4.
  • Скорпан А. Удивительный мир четырёхмерных многообразий. — М.: МЦНМО, 2016. — ISBN 978-5-4439-2385-7.

Основная литература[править | править код]

  • Kosinksi A. Differential Manifolds. — Academic Press, 1992. — Т. 138. — (Pure and Applied Mathematics).
  • Robert Gompf, Andras Stipsicz. 4-Manifolds and Kirby Calculus. — Providence, RI: American Mathematical Society, 1999. — Т. 20. — (Graduate Studies in Mathematics). — ISBN 0-8218-0994-6.