Распределение Максвелла

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Функция плотности распределения

Распределение Ма́ксвеллараспределение вероятности, встречающееся в физике и химии. Оно лежит в основании кинетической теории газов, которая объясняет многие фундаментальные свойства газов, включая давление и диффузию. Распределение Максвелла также применимо для электронных процессов переноса и других явлений. Распределение Максвелла применимо к множеству свойств индивидуальных молекул в газе. О нём обычно думают как о распределении энергий молекул в газе, но оно может также применяться к распределению скоростей, импульсов, и модуля импульсов молекул. Также оно может быть выражено как дискретное распределение по множеству дискретных уровней энергии, или как непрерывное распределение по некоторому континууму энергии.

Распределение Максвелла может и должно быть получено при помощи статистической механики (см. происхождение статсуммы). Как распределение энергии, оно соответствует самому вероятному распределению энергии, в столкновительно-доминируемой системе, состоящей из большого количества невзаимодействующих частиц, в которой квантовые эффекты являются незначительными. Так как взаимодействие между молекулами в газе является обычно весьма небольшим, распределение Максвелла даёт довольно хорошее приближение ситуации, существующей в газе.

Во многих других случаях, однако, даже приблизительно не выполнено условие доминирования упругих соударений над всеми другими процессами. Это верно, например, в физике ионосферы и космической плазмы, где процессы рекомбинации и столкновительного возбуждения (то есть излучательные процессы) имеют большое значение, в особенности для электронов. Предположение о применимости распределения Максвелла дало бы в этом случае не только количественно неверные результаты, но даже предотвратило бы правильное понимание физики процессов на качественном уровне. Также, в том случае где квантовая де Бройлева длина волны частиц газа не является малой по сравнению с расстоянием между частицами, будут наблюдаться отклонения от распределения Максвелла из-за квантовых эффектов.

Распределение энергии Максвелла может быть выражено как дискретное распределение энергии:

,

где является числом молекул имеющих энергию при температуре системы , является общим числом молекул в системе и постоянная Больцмана. (Отметьте, что иногда вышеупомянутое уравнение записывается с множителем , обозначающим степень вырождения энергетических уровней. В этом случае сумма будет по всем энергиям, а не всем состояниям системы). Поскольку скорость связана с энергией, уравнение (1) может использоваться для получения связи между температурой и скоростями молекул в газе. Знаменатель в уравнении (1) известен как каноническая статистическая сумма.

Распределение Максвелла[править | править вики-текст]

Распределение по вектору импульса[править | править вики-текст]

Представленное ниже очень сильно отличается от вывода, предложенного Джеймсом Клерком Максвеллом и позже описанного с меньшим количеством предположений Людвигом Больцманом.

В случае идеального газа, состоящего из невзаимодействующих атомов в основном состоянии, вся энергия находится в форме кинетической энергии. Кинетическая энергия соотносится с импульсом частицы следующим образом

,

где — квадрат вектора импульса .

Мы можем поэтому переписать уравнение (1) как:

,

где статсумма, соответствующая знаменателю в уравнении (1), — молекулярная масса газа, — термодинамическая температура, и постоянная Больцмана. Это распределение пропорционально функции плотности вероятности нахождения молекулы в состоянии с этими значениями компонентов импульса. Таким образом:

Постоянная нормировки C, определяется из условия, в соответствии с которым вероятность того, что молекулы имеют какой-либо вообще импульс, должна быть равна единице. Поэтому интеграл уравнения (4) по всем значениям и должен быть равен единице. Можно показать, что:

.

Таким образом, чтобы интеграл в уравнении (4) имел значение 1 необходимо, чтобы

.

Подставляя выражение (6) в уравнение (4) и используя тот факт, что , мы получим

.

Распределение по вектору скорости[править | править вики-текст]

Учитывая, что плотность распределения по скоростям пропорциональна плотности распределения по импульсам:

и используя мы получим:

,

что является распределением Максвелла по скоростям. Вероятность обнаружения частицы в бесконечно малом элементе около скорости равна

Распределение по абсолютной величине импульса[править | править вики-текст]

Интегрируя, мы можем найти распределение по абсолютной величине импульса

Распределение по энергии[править | править вики-текст]

Наконец, используя соотношения и , мы получаем распределение по кинетической энергии:

Распределение по проекции скорости[править | править вики-текст]

Распределение Максвелла для вектора скорости — является произведением распределений для каждого из трех направлений:

,

где распределение по одному направлению:

Это распределение имеет форму нормального распределения. Как и следует ожидать для покоящегося газа, средняя скорость в любом направлении равна нулю.

Распределение по модулю скоростей[править | править вики-текст]

Обычно, более интересно распределение по абсолютному значению, а не по проекциям скоростей молекул. Модуль скорости, v определяется как:

поэтому модуль скорости всегда будет больше или равен нулю. Так как все распределены нормально, то будет иметь хи-квадрат распределение с тремя степенями свободы. Если функция плотности вероятности для модуля скорости, то:

,

где

таким образом, функция плотности вероятности для модуля скорости равна

Характерная скорость[править | править вики-текст]

Хотя Уравнение (11) дает распределение скоростей, или, другими словами, долю молекул, имеющих специфическую скорость, часто более интересны другие величины, такие как средние скорости частиц. В следующих подразделах мы определим и получим наиболее вероятную скорость, среднюю скорость и среднеквадратичную скорость.

Наиболее вероятная скорость[править | править вики-текст]

наиболее вероятная скорость, — вероятность обладания которой любой молекулой системы максимальна, и которая соответствует максимальному значению плотности вероятности распределения (а значит, соответствует моде этого распределения). Чтобы найти её, необходимо вычислить , приравнять её нулю и решить относительно :

где - масса рассматриваемой частицы, - молярная масса.

Средняя скорость[править | править вики-текст]

Подставляя и интегрируя, мы получим

Среднеквадратичная скорость[править | править вики-текст]

Подставляя и интегрируя, мы получим

Вывод распределения по Максвеллу[править | править вики-текст]

Получим теперь формулу распределения так, как это делал сам Джеймс Клерк Максвелл[источник не указан 2264 дня].
Рассмотрим пространство скоростных точек (каждую скорость молекулы представляем как точку (скоростную точку) в системе координат ) в стационарном состоянии газа. Выберем бесконечно малый элемент объема . Так как газ стационарный, количество скоростных точек в остается неизменным с течением времени. Пространство скоростей изотропно, поэтому функции плотности вероятности для всех направлений одинаковы.

Максвелл предположил, что распределения скоростей по направлениям статистически независимы, то есть компонента скорости молекулы не зависит от и компонент.

- фактически вероятность нахождения скоростной точки в объеме .

Правая часть не зависит от и , значит и левая от и не зависит. Однако и равноправны, следовательно левая часть не зависит также и от . Значит данное выражение может лишь равняться некоторой константе.

Теперь нужно сделать принципиальный шаг — ввести температуру. Кинетическое определение температуры (как меры средней кинетической энергии движения молекул):

где Дж/К - постоянная Больцмана.

Ввиду равноправия всех направлений:

Чтобы найти среднее значение , проинтегрируем её вместе с функцией плотности вероятности от минус до плюс бесконечности:

Отсюда найдём :

Функция распределения плотности вероятности для (для и аналогично):

Теперь рассмотрим распределение по величине скорости. Вернемся в пространство скоростных точек. Все точки с модулем скорости лежат в шаровом слое радиуса и толщины , и - объем этого шарового слоя.

Таким образом, мы получили функцию плотности вероятности , которая и является распределением Максвелла.

Границы применимости[править | править вики-текст]

Условия применимости распределения Максвелла:

1. Равновесное состояние системы, состоящей из большого числа частиц.
2. Изотропная система.
3. Классическая система. Это значит, что система должна быть не релятивистской и не квантовой (взаимодействие частиц допускается, но только зависящее от относительного положения частиц).

Условия классического рассмотрения[править | править вики-текст]

Рассматриваем объем xyz в газе, на который в среднем приходится 1 частица. Чтобы неопределенности в координате и импульсе не играли роли и применялась бы классическая, а не квантовая механика, должны выполняться соотношения:

где - постоянная Планка.
- объем, приходящийся на частицу - это полный (единичный) объем, поделенный на количество частиц.
- температура вырождения.


При температурах (1.2.3) ниже газ становится вырожденным, и распределение Максвелла к нему применять нельзя.

См. также[править | править вики-текст]

Ссылки[править | править вики-текст]

http://www.falstad.com/gas/