Релятивистское замедление времени

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Под релятиви́стским замедле́нием вре́мени обычно подразумевают кинематический эффект специальной теории относительности, заключающийся в том, что в движущемся теле все физические процессы проходят медленнее, чем следовало бы для неподвижного тела по отсчётам времени неподвижной (лабораторной) системы отсчёта.

Релятивистское замедление времени проявляется[1], например, при наблюдении короткоживущих элементарных частиц, образующихся в верхних слоях атмосферы под действием космических лучей и успевающих благодаря ему достичь поверхности Земли.

Данный эффект, наряду с гравитационным замедлением времени учитывается в спутниковых системах навигации (например, в GPS) ход времени часов спутников скорректирован на разницу с поверхностью Земли[2], составляющую суммарно 38 микросекунд в день[3]. В качестве иллюстрации релятивистского замедления времени часто приводится парадокс близнецов.

Движение с постоянной скоростью[править | править вики-текст]

Количественное описание замедления времени может быть получено из преобразований Лоренца:

где  — время, проходящее между двумя событиями движущегося объекта с точки зрения неподвижного наблюдателя,  — время, проходящее между двумя событиями движущегося объекта с точки зрения наблюдателя, связанного с движущимся объектом,  — относительная скорость движения объекта,  — скорость света в вакууме. Точность формулы неоднократно проверена на элементарных частицах и атомах, так что относительная ошибка составляет менее 0,1 ppm[источник не указан 201 день].

Аналогичное обоснование имеет эффект лоренцева сокращения длины.

Замедление времени и инвариантность скорости света[править | править вики-текст]

Наиболее наглядно эффект замедления времени проявляется на примере световых часов, в которых импульс света периодически отражается от двух зеркал, расстояние между которыми равно . Время движения импульса от зеркала к зеркалу в системе отсчёта, связанной с часами, равно . Пусть относительно неподвижного наблюдателя часы двигаются со скоростью в направлении, перпендикулярном траектории светового импульса. Для этого наблюдателя время движения импульса от зеркала к зеркалу будет уже больше.

Light clock ru.png

Световой импульс проходит в неподвижной системе отсчёта вдоль гипотенузы треугольника с катетами и . Импульс распространяется с той же скоростью , что и в системе, связанной с часами. Поэтому по теореме Пифагора:

Выражая через , получаем формулу замедления времени.

Движение с переменной скоростью[править | править вики-текст]

Если тело двигается с переменной скоростью , то в каждый момент времени с ним можно связать локально инерциальную систему отсчёта. Для бесконечно малых интервалов и можно использовать формулу замедления времени, полученную из преобразований Лоренца. При вычислении конечного интервала времени , прошедшего по часам, связанным с телом, необходимо проинтегрировать вдоль его траектории движения:

Время , измеренное по часам, связанным с двигающемся объектом, часто называют собственным временем тела [4]. При этом предполагается, что замедление времени определяется только скоростью объекта, но не его ускорением. Это утверждение имеет достаточно надёжные экспериментальные подтверждения. Например, в циклическом ускорителе (CERN Storage-Ring experiment [5]) время жизни мюонов в пределах относительной экспериментальной ошибки увеличивается в соответствии с релятивистской формулой. В эксперименте скорость мюонов составляла , и время замедлялось в раз. При 7 метровом радиусе кольца ускорителя ускорение мюонов достигало значений , где м/c² — ускорение свободного падения.

Замедление времени при космическом полёте[править | править вики-текст]

Эффект замедления времени проявляется при космических полётах с релятивистскими скоростями. Такой полёт в одну сторону может состоять из трёх этапов: набор скорости (разгон), равномерное движение и торможение. Пусть по часам неподвижной системы отсчёта длительности разгона и торможения одинаковы и равны , а этап равномерного движения длится время . Если разгон и торможение проходят релятивистски равноускоренно (с параметром собственного ускорения ), то по часам корабля пройдёт время[6]:

За время разгона корабль достигнет скорости:

пройдя расстояние

Рассмотрим гипотетический полёт к звёздной системе Альфа Центавра, удалённой от Земли на расстояние в 4,3 световых года. Если время измеряется в годах, а расстояния — в световых годах, то скорость света равна единице, а единичное ускорение св. год/год² близко к ускорению свободного падения и примерно равно 9,5 м/c².

Пусть половину пути космический корабль двигается с единичным ускорением, а вторую половину — с таким же ускорением тормозит (). Затем корабль разворачивается и повторяет этапы разгона и торможения. В этой ситуации время полёта в земной системе отсчёта составит примерно 12 лет, тогда как по часам на корабле пройдёт 7,3 года. Максимальная скорость корабля достигнет 0,95 от скорости света.

Особенности метода измерения релятивистского замедления времени[править | править вики-текст]

Рис. 1

Метод измерения релятивистского замедления времени имеет свою особенность. Она заключается в том, что показания двух движущихся друг относительно друга часов (и длительности жизни двух движущихся друг относительно друга мюонов) непосредственно сравнивать невозможно. Можно говорить, что единичные часы идут всегда замедленно по отношению к множеству синхронно идущих часов, если единичные часы движутся относительно этого множества. Показания же множества часов пролетающих мимо единичных часов, напротив, всегда меняются ускоренно по отношению к часам единичным. В этой связи термин «замедление времени» является бессмысленным без указания того, к чему это замедление относится — к единичным часам или к множеству синхронизированных и покоящихся друг относительно друга часов.[7][8]

Рис. 2

Это можно продемонстрировать с помощью опыта, схема которого изображена на рис. 1. Движущиеся со скоростью часы, измеряющие время проходят последовательно мимо точки в момент и мимо точки в момент .

В эти моменты производится сравнение положений стрелок движущихся часов и соответствующих неподвижных, находящихся рядом с ними.

Пусть за время движения от точки до точки стрелки движущихся часов отмерят промежуток времени а стрелки часов 1 и 2, предварительно синхронизированных в неподвижной системе , отмерят промежуток времени . Таким образом,

, (1)

Но согласно обратным преобразованиям Лоренца имеем

(2)

Подставляя (1) в (2) и замечая, что движущиеся часы все время находятся в одной и той же точке движущейся системы отсчёта , то есть что

(3)

получаем

(4)

Эта формула означает, что промежуток времени, отмеренный неподвижными часами, оказывается большим, чем промежуток времени, отмеренный движущимися часами. Но это и означает, что движущиеся часы отстают от неподвижных, то есть их ход замедляется.

Формула (4) так же обратима, как и соответствующая формула для длин линеек

Однако, написав формулу в виде

(5)

мы должны иметь в виду, что , измеряются уже не в опыте, изображенном на рис. 1, а в опыте, изображенном на рис. 2. В этом случае, согласно преобразованиям Лоренца

(6)

при условии

(7)

получаем формулу (5)

В схеме опыта, изображенного на рис. 1, тот результат, что часы 2 оказались впереди движущихся часов, с точки зрения движущейся системы объясняется тем, что часы 2 с самого начала шли не синхронно с часами 1 и опережали их (в силу неодновременности разобщенных событий, одновременных в другой движущейся системе отсчёта).

Таким образом, исходя из относительности одновременности пространственно разделённых событий замедление движущихся часов не является парадоксальным.

См. также[править | править вики-текст]

Примечания[править | править вики-текст]

  1. Cosmic ray muons and relativistic time dilation (англ.). CERN. Архивировано из первоисточника 4 февраля 2012.
  2. Einstein. News from the National Physical Laboratory // National Physical Laboratory, Winter 2005
  3. Rizos, Chris.GPS Satellite Signals // University of New South Wales, 1999 (недоступная ссылка с 06-05-2016 (201 день))
  4. Ландау, Л. Д., Лифшиц, Е. М. Теория поля. — Издание 8-е, стереотипное. — М.: Физматлит, 2006. — 534 с. — («Теоретическая физика», том II). — ISBN 5-9221-0056-4
  5. Bailey J. et al. — Measurements of relativistic time dilatation for positive and negative muons in circular orbit, Nature, v.268, p.301-305 (1977)
  6. Ускоренное движение в специальной теории относительности
  7. Я.П. Терлецкий. Парадоксы Теории Относительности. — М.: Наука, 1966. — С. 40 – 42.
  8. Х.Х. Ыйглайне. В мире больших скоростей. — M.: Наука, 1966. — С. 100-105.