Риманова поверхность

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
Риманова поверхность для функции

Ри́манова пове́рхность — математический объект, традиционное в комплексном анализе название одномерного комплексного дифференцируемого многообразия.

Примерами римановых поверхностей являются комплексная плоскость и сфера Римана. Поверхность Римана позволяет геометрически представить многозначные функции комплексного переменного таким образом, что каждой её точке соответствует одно значение многозначной функции, причём при непрерывном перемещении по поверхности непрерывно изменяется и функция[1]. Каноническим видом поверхности Римана является представление в виде плоской лепёшки с некоторым количеством дыр[2].

Топологической характеристикой римановой поверхности является род; поверхность рода — это сфера, поверхность рода — тор[3].

История[править | править код]

Поверхности такого рода систематически изучать начал Бернхард Риман (1826—1866).

По мнению Феликса Клейна, идея римановой поверхности принадлежит еще Галуа: в предсмертном письме он упоминает среди своих достижений какие-то исследования по «двусмысленности функций» (фр. ambiguïté des functions)[4].

См. также[править | править код]

Примечания[править | править код]

  1. Голубев, 1941, с. 76.
  2. Голубев, 1941, с. 78.
  3. Риманова поверхность — статья из Математической энциклопедии. Е. Д. Соломенцев
  4. Клейн Ф. Лекции о развитии математики в XIX столетии: В 2 т.: Пер. с нем. М.: Наука, 1989. Т. 1, стр. 105.

Литература[править | править код]

  • Голубев В. В. Лекции по аналитической теории дифференциальных уравнений. — М.Л.: Гостехтеориздат, 1941. — 400 с.