Ромб

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Rhombus.svg

Ромб (др.-греч. ῥόμβος, лат. rombus, в буквальном переводе: «бубен») — это параллелограмм, у которого все стороны равны[1].

Этимология[править | править вики-текст]

Термин «ромб» происходит от др.-греч. ῥόμβος — «бубен». Если сейчас бубны в основном делают круглой формы, то раньше их делали как раз в форме квадрата или ромба. Поэтому название карточной масти бубны, знаки которой имеют ромбическую форму, происходит ещё с тех времён, когда бубны не были круглыми.

Слово «ромб» впервые употребляется у Герона и Паппа Александрийского.

Свойства[править | править вики-текст]

  1. Ромб является параллелограммом, поэтому его противолежащие стороны равны и попарно параллельны, АВ || CD, AD || ВС.
  2. Диагонали ромба пересекаются под прямым углом (ACBD) и в точке пересечения делятся пополам. Тем самым диагонали делят ромб на четыре прямоугольных треугольника.
  3. Диагонали ромба являются биссектрисами его углов (∠DCA = ∠BCA, ∠ABD = ∠CBD и т. д.).
  4. Сумма квадратов диагоналей равна квадрату стороны, умноженному на 4 (следствие из тождества параллелограмма).
  5. Середины четырех сторон ромба являются вершинами прямоугольника.
  6. Диагонали ромба являются перпендикулярными осями его симметрии.
  7. В любой ромб можно вписать окружность, центр которой лежит на пересечении его диагоналей.

Признаки[править | править вики-текст]

Параллелограмм является ромбом тогда и только тогда, когда выполняется хотя бы одно из следующих условий[2]:

  1. Две его смежные стороны равны (отсюда следует, что все стороны равны, ).
  2. Его диагонали пересекаются под прямым углом (ACBD).
  3. Одна из диагоналей делит содержащие её углы пополам.

Предположим, что заранее не известно, что четырёхугольник является параллелограммом, но дано, что все его стороны равны. Тогда этот четырёхугольник есть ромб[1].

Квадрат, как частный случай ромба[править | править вики-текст]

Из определения квадрата, как четырёхугольника, у которого все стороны и углы равны, следует, что квадрат — частный случай ромба. Иногда квадрат определяют, как ромб, у которого все углы равны.

Однако иногда под ромбом может пониматься только четырёхугольник с непрямыми углами, то есть с парой острых и парой тупых углов[3][4][5].

Площадь ромба[править | править вики-текст]

Rhombus1.svg
  • Площадь ромба равна половине произведения его диагоналей.
  • Поскольку ромб является параллелограммом, его площадь также равна произведению его стороны на высоту.
  • Кроме того, площадь ромба может быть вычислена по формуле:
,

где  — угол между двумя смежными сторонами ромба.

  • Также площадь ромба можно рассчитать по формуле, где присутствует радиус вписанной окружности и угол :

Радиус вписанной окружности[править | править вики-текст]

Радиус вписанной окружности r может быть выражен через диагонали p и q в виде:[6]

В геральдике[править | править вики-текст]

Ромб является простой геральдической фигурой.

Симметрия[править | править вики-текст]

Ромб симметричен относительно любой из своих диагоналей, поэтому часто используется в орнаментах и паркетах.

См. также[править | править вики-текст]

Литература[править | править вики-текст]

  • Выгодский М. Я. Справочник по элементарной математике. — М.: Наука, 1978.
  • Зайцев В. В., Рыжков В. В., Сканави М. И. Элементарная математика. Повторительный курс. — Издание третье, стереотипное. — М.: Наука, 1976. — 591 с.

Примечания[править | править вики-текст]

  1. 1 2 Элементарная математика, 1976, с. 435..
  2. Элементарная математика, 1976, с. 435—436..
  3. Ромб // Малый академический словарь. — М.: Институт русского языка Академии наук СССР. Евгеньева А. П.. 1957—1984.
  4. Ромб // Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910
  5. Ромб // Объяснение 25000 иностранных слов, вошедших в употребление в русский язык, с означением их корней. Михельсон А.Д., 1865
  6. Weisstein, Eric W. Rhombus (англ.) на сайте Wolfram MathWorld.