Ряд Лиувилля — Неймана

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Ряд Лиуви́лля — Не́ймана в интегральном исчислении — бесконечный ряд, соответствующий решению интегрального уравнения Фредгольма с непрерывным малым ядром. Назван по именам Жозефа Лиувилля и Карла Неймана.

Получение ряда[править | править вики-текст]

Будем искать решение уравнения Фредгольма

методом последовательных приближений, положив :

Последнее выражение в формуле является операторной записью интеграла. Методом математической индукции проверяется следующее равенство:

Функции называются итерациями. Можно показать, что все итерации непрерывны и ограничены на :

где  — мера множества , а .

Из этой оценки следует, что ряд

называемый рядом Лиувилля — Неймана, мажорируется числовым рядом

сходящимся в круге , поэтому при таких ряд Лиувилля — Неймана сходится регулярно (абсолютно и равномерно). Это значит, что последовательные приближения при равномерно стремятся к искомой функции .

См. также[править | править вики-текст]

Литература[править | править вики-текст]