Сверхширокоугольный объектив

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску

Сверхширокоугольный объектив — короткофокусный объектив, угловое поле которого превышает 90° по диагонали кадра, а фокусное расстояние короче, чем наименьшая сторона прямоугольного кадра[1]. Таким образом для малоформатного фотоаппарата все объективы с фокусным расстоянием менее 24 мм считаются сверхширокоугольными, поскольку размер такого кадра составляет 24×36 мм. Для кинокамеры формата «Супер-35» с шагом кадра в 4 перфорации, сверхширокоугольным считается любой объектив короче 18 мм. Сверхширокоугольными могут быть как фикс-объективы, так и зумы, если диапазон фокусных расстояний последних удовлетворяет упомянутым условиям.

Для фотосистем с разными форматами кадра сверхширокоугольными могут считаться объективы разных фокусных расстояний:

Сверхширокоугольный зум-объектив «Canon» с диапазоном фокусных расстояний 11—24 мм, предназначенный для малоформатных или «полнокадровых» фотоаппаратов

Классификация[править | править код]

Существуют два основных типа сверхширокоугольных объективов: дисторсирующие (реже — дисторзирующие) и ортоскопические[2][3]. Вторые составляют самую большую группу, поскольку строят изображение, строго подчиняющееся законам линейной перспективы[4]. Прямые линии отображаются такими объективами прямыми, а форма объектов сохраняет геометрическое подобие. Дисторсирующие объективы отличаются большой неисправленной дисторсией и очень большими угловыми полями, доходящими до 180° и даже превышающими этот угол[5]. В обиходе такие объективы получили название «рыбий глаз» и от ортоскопических отличаются ярко выраженными искажениями отображаемых предметов. Прямые линии на снимке отображаются дугами, а у «циркулярного рыбьего глаза» всё изображение имеет форму круга. Дисторсирующие сверхширокоугольники могут быть использованы в качестве яркого изобразительного приёма, но массовое применение нашли только в специальных областях, таких как метеорология или видеонаблюдение[2].

Историческая справка[править | править код]

Первый серийный объектив «Перископ», обладающий достаточным для сверхширокоугольника угловым полем 90°, создан в 1865 году немецким оптиком Адольфом Штейнхелем[6]. Однако, за шесть лет до этого в США появился объектив «Панорама» с подобной симметричной оптической схемой. Угол поля зрения в 120° достигался, благодаря заполнению сферической полости между двумя менисками водой[7]. Увеличить поле зрения до 135° удалось лишь в 1900 году в объективе «Гипергон» фирмы Goerz, предназначенном для съёмки на фотопластинки 18×24 см[8][9]. Конструкция его была аналогична двум предыдущим, и состояла из двух симметрично расположенных менисков. Огромное поле зрения достигалось за счёт их предельного изгиба и оптических характеристик лучшего на тот момент стекла в мире[7].

Главный недостаток всех этих объективов заключался в крайне низкой светосиле, которая не превышала значения f/22. Однако, применению в основных областях, для которых предназначалась сверхширокоугольная оптика — архитектурная и интерьерная фотография — это не мешало. Бурное развитие авиации и распространение аэрофотосъёмки в первой четверти XX века дали самый сильный толчок для дальнейших разработок, которые привели к появлению светосильных сверхширокоугольников, особенно востребованных для маршрутной съёмки с небольших высот. В 1934 году немецкий оптик Роберт Рихтер запатентовал объектив «Zeiss Topogon», предназначенный для топографической аэрофотосъёмки, что отражено в названии[7]. За счёт добавления ещё двух симметричных менисков светосилу удалось довести до f/6,3 при поле зрения в 100°. В том же году советский оптик Михаил Русинов рассчитал объектив «Лиар-6» с аналогичными характеристиками, ставший родоначальником сверхширокоугольного семейства «Руссар»[10].

Все эти объективы проектировались в расчёте на максимальную ортоскопичность, необходимую в фотограмметрии. В 1906 году американский физик Роберт Вильямс Вуд запатентовал дисторсирующий сверхширокоугольник, предназначенный для фоторегистрации облачности в пределах всей полусферы небосвода. Он же придумал термин «рыбий глаз», подчёркивающий схожесть получаемого изображения с полем зрения подводных обитателей из-за преломляющих свойств воды[11]. В 1924 году британская компания Beck of London изготовила первый объектив «Hill Sky Lens» этого типа[12]. В 1932 году германский патент № 620 538 на более совершенную оптическую схему «рыбьего глаза» получен компанией AEG. После войны дисторсирующие сверхширокоугольники появились в каталогах большинства оптических компаний, дополняя объективы остальных типов. Кроме объективов начался выпуск афокальных насадок на обычную оптику, дающих аналогичные искажения и полусферическое поле зрения[11].

Технические особенности[править | править код]

Неравномерность освещённости поля изображения[править | править код]

Известно, что одновременно с увеличением угла поля зрения снижается освещённость на краях поля изображения. Это объясняется ростом разницы длины хода лучей к центру и краям изображения, а освещённость при этом изменяется согласно закону косинуса четвёртой степени[13][14]:

где — освещённость, создаваемая пучками, наклонными к оптической оси под углом , а — освещённость, создаваемая осевым пучком. Равенство справедливо для любых объективов, но критическое значение приобретает для сверхширокоугольной оптики.

Так, для угла в 23° (половина полевого угла 46°), характерного для большинства нормальных объективов, освещённость в углах кадра составит 0,72 от освещённости в центре. Для половины минимального полевого угла сверхширокоугольника, составляющей 45°, четвёртая степень косинуса равна 0,25, что соответствует четырёхкратному (на две экспозиционных ступени) снижению освещённости без учёта виньетирования. Дальнейшее увеличение полевого угла приводит к ещё более сильному затемнению. Например, расширение поля зрения всего на 10° приводит к снижению освещённости на краях кадра до 0,17 от его центра. Для компенсации затенения краёв снимка в ранней фотографии приходилось прибегать даже к таким ухищрениям, как установка в центре передней линзы вращающегося звездообразного оттенителя с пневматическим приводом[7]. Позднее на одну из линз начали наносить полупрозрачное металлическое напыление[15]. Проблема была практически неустранимой в сверхширокоугольных объективах симметричной конструкции, пригодных для установки только на дальномерных фотоаппаратах или метражных камерах[13]. Тщательный подбор линз с учётом аберрационного виньетирования позволял уменьшить степень косинуса до 3 («Руссар»), а в лучших конструкциях до 2,5 («Zeiss Hologon»), однако равномерность экспозиции, даваемая сверхширокоугольными объективами, всё равно оставалась неудовлетворительной[16].

Появление оптики ретрофокусного типа, предназначенной для однообъективных зеркальных фотоаппаратов и кинокамер с зеркальным обтюратором, позволило частично решить проблему закона косинусов. Удлинённый задний отрезок таких объективов уменьшает их угол поля изображения, снижая разницу хода осевых и краевых пучков до значений, характерных для нормальных объективов. Дисторсирующие объективы типа «рыбий глаз» изначально строились по ретрофокусной схеме, и поэтому неравномерная освещённость по полю была для них нехарактерна. Равномерная освещённость и минимальное виньетирование достигаются в новейших сверхширокоугольниках за счёт частичной или полной телецентричности в пространстве изображений[17].

Аберрации[править | править код]

Не менее серьёзную проблему при конструировании сверхширокоугольных объективов составляют аберрации, резко усиливающиеся по мере отклонения пучков от оптической оси. Особенно резко возрастают астигматизм и хроматическая аберрация. Дисторсия практически полностью корригировалась уже в самых первых конструкциях за счёт их симметричности[7]. Внедрение компьютеров для расчёта оптических схем, а также распространение и удешевление асферических линз, позволили приблизить качество изображения сверхширокоугольных объективов ко всем остальным типам оптики.

Искажения[править | править код]

Искажения объектива типа «рыбий глаз». Прямые линии отображаются дугами
Искажения ортоскопического сверхширокоугольника. Крайние шары выглядят на снимке овалами

Как ортоскопические, так и дисторсирующие сверхширокоугольные объективы меняют форму отображаемых предметов, поскольку любая проекция сферического обзора на плоскость неизбежно приводит к искажениям[18]. При небольших полях зрения они малозаметны, но начинают проявляться с ростом угла обзора[19]. Дисторсирующие объективы дают наиболее яркую картину искажений, соответствующую азимутальной проекции в картографии, и похожую на отражение в зеркальном шаре. Сильная бочкообразная дисторсия приводит к эффекту «сплющивания» и выгибания предметов по мере приближения к краю изображения. Горизонт преображается в дугу, выпуклость которой направлена в сторону, противоположную отклонению оптической оси от горизонтали. Все прямые линии отображаются кривыми, за исключением тех, которые проходят точно через центр кадра. Любой сюжет, снятый таким объективом, приобретает известную условность, которая может быть очень выразительна, но неприемлема в качестве постоянного изобразительного средства.

Искажения, привносимые ортоскопическими объективами, не так бросаются в глаза, но не менее существенны, соответствуя гномонической проекции. Даже при полном отсутствии дисторсии любая ортоскопическая оптика растягивает снимаемые объекты по мере удаления от центра кадра из-за косой проекции на плоский светоприёмник. При небольших углах поля зрения эти искажения практически незаметны, проявляясь только в сверхширокоугольных объективах с большим наклоном боковых пучков в пространстве предметов. Вследствие этого один и тот же объект на краях кадра выглядит более растянутым, чем в центре. В большинстве сюжетов это почти незаметно, однако проявляется на предметах, форма которых узнаваема или заведомо известна. Человеческое лицо, попавшее на край кадра, снятого сверхширокоугольником, растягивается в ширину, а иногда и перекашивается в направлении к углам изображения. По этой причине сверхширокоугольные объективы практически непригодны для портретной и групповой съёмки[20].

Неизбежность таких искажений при больших угловых полях в 1950-х годах привела к созданию панорамного кинематографа, где широкое поле зрения разбивается на три части, регистрируемые тремя повёрнутыми на соответствующий угол объективами[21]. Полученное таким способом изображение затем воссоздаётся тремя проекторами на сильно изогнутом экране цилиндрического профиля. Однако, панорамные киносистемы оказались слишком сложны и непригодны для постановочного кинематографа, уступив место широкоформатным и широкоэкранным. В кинематографе и телевидении искажения сверхширокоугольной оптики особенно заметны при панорамировании, и при этом выглядят как неестественное «перетекание» пространства от одного края кадра к другому с замедлением в его центре. По этой причине такие объективы предпочтительно использовать при неподвижной камере. В то же время, на движущемся изображении сверхширокоугольник подчёркивает приближение или удаление персонажей, менее заметные с другими объективами[22][23].

Особенности использования[править | править код]

Ортоскопические сверхширокоугольные объективы дают такое же изображение, как и объективы любых других фокусных расстояний. Главное отличие заключается в подчёркнутом перспективном сокращении, которое объясняется неестественно большим углом обзора при рассматривании готового снимка с обычного расстояния[24].

Независимо от типа, всем сверхширокоугольным объективам свойственна очень большая глубина резкости, практически не требующая точной фокусировки. Благодаря этому можно пользоваться метражной шкалой или простой установкой на гиперфокальное расстояние. Ещё одним достоинством сверхширокоугольных объективов считается низкая чувствительность к тряске, дающая возможность снимать видео с движения даже без специальных стабилизаторов типа «Стэдикам». Незначительные угловые перемещения камеры практически незаметны при таких больших углах обзора. Это также позволяет использовать относительно длинные выдержки при фотографировании без штатива в условиях недостаточного освещения.

Источники света в кадре[править | править код]

Небосвод с солнцем, снятые рыбьим глазом «Пеленг»

При большом угловом поле, особенно широком у объективов типа «рыбий глаз», создать эффективную бленду практически невозможно. Поэтому очень трудно избежать попадания в кадр источников света, дающих на изображении нежелательные пятна[25]. Избежать этого можно выбором соответствующих точек съёмки, а в некоторых случаях блики могут быть использованы, как изобразительный приём. У большинства сверхширокоугольных объективов бленда выполнена несъёмной, как часть оправы.

Светофильтры[править | править код]

Ещё одна особенность сверхширокоугольных объективов всех типов заключается в невозможности установки светофильтров, в том числе защитных, перед передней линзой. В большинстве конструкций она обладает такими кривизной и диаметром, что оправа светофильтра неизбежно попадала бы в поле зрения. Поэтому как «фиксы», так и «зумы» этих диапазонов рассчитаны на применение светофильтров, устанавливаемых у задней линзы небольшого диаметра. В некоторых случаях для сохранения необходимых оптических характеристик, за последним компонентом предусматривается штатная плоскопараллельная пластина в соответствующей оправе. Замена её на светофильтр такой же толщины не приводит к изменению заднего отрезка, сохраняя оптические свойства объектива. Однако, чаще применяются светофильтры на тонкой фолиевой подложке, для вырубки которых в комплекте объектива предусматривается металлический шаблон. При использовании поляризационного или градиентного светофильтров со сверхширокоугольной оптикой следует учитывать, что поляризованный свет занимает только ту часть небосвода, где нет солнца, поэтому может появиться нежелательный градиент, который выглядит на снимке как неравномерность экспозиции[25].

См. также[править | править код]

Примечания[править | править код]

  1. Советское фото, 1988, с. 42.
  2. 1 2 Фотографическая оптика, 1978, с. 329.
  3. Учебная книга по фотографии, 1976, с. 44.
  4. Фотокинотехника, 1981, с. 421.
  5. Теория оптических систем, 1992, с. 268.
  6. Foto&video, 2004, с. 69.
  7. 1 2 3 4 5 Marco Cavina. La storia definitiva dei super-grandangolari simmetrici (итал.). Memorie di luce & memorie del tempo (24 settembre 2007). Дата обращения 7 сентября 2019.
  8. М. М. Русинов. Исторические этапы развития оптических систем. Этапы развития отечественного фотоаппаратостроения (1989). Дата обращения 15 сентября 2019.
  9. Советское фото, 1966, с. 47.
  10. Русинов, Михаил Михайлович. История геодезии (25 ноября 2014). Дата обращения 7 сентября 2019.
  11. 1 2 Michel Thoby. Fisheye lens history (англ.). About Panography. Дата обращения 7 сентября 2019.
  12. Владимир Родионов. Panasonic Lumix DMC-GF1. Изображение в числах. iXBT.com (22 января 2010). Дата обращения 26 августа 2013.
  13. 1 2 Фотографическая оптика, 1978, с. 78.
  14. Справочник кинооператора, 1979, с. 154.
  15. Учебная книга по фотографии, 1976, с. 41.
  16. Фотографическая оптика, 1978, с. 372.
  17. Telecentric lenses tutorial (англ.). «Opto Engineering». Дата обращения 13 декабря 2018.
  18. Иллюзии мозга. Картографические проекции. Хабр (15 ноября 2016). Дата обращения 7 сентября 2019.
  19. Проекции панорамных изображений. Cambridge in Colour. Дата обращения 7 сентября 2019.
  20. Съёмка людей широкоугольным объективом. LiveJournal (8 мая 2011). Дата обращения 24 марта 2019.
  21. Основы фильмопроизводства, 1975, с. 34.
  22. Справочная книга кинолюбителя, 1977, с. 26.
  23. Основы кинотехники, 1965, с. 62.
  24. Фотокинотехника, 1981, с. 237.
  25. 1 2 СЪЕМКА ШИРОКОУГОЛЬНЫМ ОБЪЕКТИВОМ: СВОЙСТВА ОПТИКИ И ИХ ПРИМЕНЕНИЕ. Фотошкола «Genesis» (16 февраля 2012). Дата обращения 24 марта 2019.

Литература[править | править код]

  • Г. Андерег, Н. Панфилов. Глава III. Изобразительные средства кинематографа // Справочная книга кинолюбителя / Д. Н. Шемякин. — Л.: «Лениздат», 1977. — С. 21—29. — 368 с.
  • Д. С. Волосов. Глава IV. Свойства оптических схем объективов различных оптических характеристик // Фотографическая оптика. — 2-е изд. — М.: «Искусство», 1978. — С. 293—360. — 543 с. — 10 000 экз.
  • Е. М. Голдовский. Основы кинотехники / Л. О. Эйсымонт. — М.: «Искусство», 1965. — 636 с.
  • Гордийчук О. Ф., Пелль В. Г. Раздел III. Киносъёмочные объективы // Справочник кинооператора / Н. Н. Жердецкая. — М.: «Искусство», 1979. — С. 143—173. — 440 с.
  • Н. П. Заказнов, С. И. Кирюшин, В. И. Кузичев. Глава XV. Фотографический объектив // Теория оптических систем / Т. В. Абивова. — М.: «Машиностроение», 1992. — С. 240—268. — 448 с. — 2300 экз. — ISBN 5-217-01995-6.
  • Е. А. Иофис. Фотокинотехника / И. Ю. Шебалин. — М.,: «Советская энциклопедия», 1981. — 447 с. — 100 000 экз.
  • Б. Н. Коноплёв. Основы фильмопроизводства / В. С. Богатова. — 2-е изд.. — М.: «Искусство», 1975. — 448 с. — 5000 экз.
  • Э. Д. Тамицкий, В. А. Горбатов. Учебная книга по фотографии / Фомин А. В., Фивенский Ю. И.. — М.: «Лёгкая индустрия», 1976. — С. 32—41. — 320 с. — 130 000 экз.
  • Валерий Тарабукин. Современные фотообъективы (рус.) // «Советское фото» : журнал. — 1988. — № 4. — С. 42, 43. — ISSN 0371-4284.

Ссылки[править | править код]