Свободное произведение

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Граф Кэли группы .

Свободным произведением групп называется группа, порождённая элементами этих двух групп, без каких-либо дополнительных соотношений.

Свободное произведение и обычно обозначается .

Определения[править | править вики-текст]

  • Если группы заданы через порождающие и соотношения , то
    • Это определение также допускает естественное обобщение на случай свободного произведения любого числа групп.

Примеры[править | править вики-текст]

  • Свободное произведение изоморфно бесконечной группе диэдра .
  • Свободное произведение изоморфно проективной группе .
  • Свободное произведение копий  — свободная группа с образующими.

Литература[править | править вики-текст]

  • Каргаполов М. И., Мерзляков Ю. И. Основы теории групп. М.: Наука, 1982.
  • Кострикин А. И. Введение в алгебру. М.: Наука, 1977.
  • Курош А. Г. Теория групп. (3-е изд.). М.: Наука, 1967.
  • Холл М. Теория групп. М.: Издательство иностранной литературы, 1962.