Сейсмостойкое строительство

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Сейсмически прочная и массивная пирамида Кукулькана города Чичен-Ица
20-этажный жилой дом, упавший при разрушительном землетрясении в Чили, 2010
Штаб-квартира ООН в Порт-о-Пренс после землетрясения 12 января 2010 года

Сейсмостойкое строительство — раздел гражданского строительства, специализирующийся в области изучения поведения зданий и сооружений под сейсмическим воздействием в виде сотрясений земной поверхности, потери грунтом своей несущей способности, волн цунами и разработки методов и технологий строительства зданий, устойчивых к сейсмическим воздействиям.

Сейсмостойкое строительство может рассматривать любой строительный объект как фортификационное сооружение, но предназначенное для обороны от специфического противника — землетрясения или вызванных землетрясением катастроф (например, цунами).

Главные задачи сейсмостойкого строительства:

  • изучение процессов взаимодействия строительного объекта и неустойчивого основания;
  • оценка последствий возможного сейсмического воздействия;
  • проектирование, возведение и поддержание в надлежащем состоянии сейсмостойких объектов[1]

Сейсмостойкое сооружение не обязательно должно быть громоздким и дорогим как, например, пирамида Кукулькана в городе Чичен-Ица[источник?]. В настоящее время наиболее эффективным и экономически целесообразным инструментом в сейсмостойком строительстве является вибрационный контроль сейсмической нагрузки и, в частности, сейсмическая изоляция, позволяющая возводить сравнительно легкие и недорогие постройки.

Сейсмическое нагружение[править | править вики-текст]

Сейсмическое нагружение является одним из основных понятий в сейсмостойком строительстве и теории сейсмостойкости и означает приложение колебательного возбуждения землетрясения к различным сооружениям.

Величина сейсмической нагрузки в большинстве случаев зависит от:

  • интенсивности, продолжительности и частотных характеристик ожидаемого землетрясения;
  • геологических условий площадки строительства;
  • динамических параметров сооружения.

Сейсмическое нагружение происходит на поверхностях контакта сооружения с грунтом, либо с соседним сооружением[2], либо с порождённой землетрясением гравитационной волной цунами. Оно постоянно экзаменует сейсмостойкость сооружения и иногда превышает его возможность выстоять без разрушений.

Сейсмическая защита[править | править вики-текст]

Наружная антисейсмическая стальная ферма спального корпуса Университета Беркли

Прочность стали примерно в 10 раз выше, чем у самого прочного бетона и каменной или кирпичной кладки, поэтому сейсмостойкость строения обычно достигается использованием мощного стального каркаса или стена, способных выдержать расчётное землетрясение без полного разрушения и с минимальными человеческими жертвами. Примером такой постройки может служить спальный корпус Университета Беркли, усиленный наружной антисейсмической стальной фермой.

Модель 18-этажного здания на сейсмопротекторе

Сейсмостойкое строительство, однако, не ставит цели построить практически неразрушимое здание: более целесообразным и экономически обоснованным является задача дать зданию возможность «парить» над трясущейся землей. Для решения этой задачи применяются сейсмопротекторы — вид сейсмической изоляции, которая резко повышает сейсмостойкость строений[3].

Методы сейсмостойкого строительства[править | править вики-текст]

Сейсмический анализ[править | править вики-текст]

Анализ сейсмостойкости является инструментом в сейсмостойком строительстве, который служит для лучшего понимания работы зданий и сооружений под сейсмической нагрузкой. Анализ сейсмостойкости основывается на принципах динамики сооружений[4] и антисейсмического проектирования. Самым распространённым методом анализа сейсмостойкости являлся метод спектров реакции[5], который получил свое развитие в настоящее время[6]. Однако спектры реакции хороши лишь для систем с одной степенью свободы. Использование пошагового интегрирования с трехмерными диаграммами сейсмостойкости[7] оказываются более эффективным методом для систем со многими степенями свободы и со значительной нелинейностью в условиях переходного процесса кинематической раскачки.

Экспериментальная проверка сейсмостойкости[править | править вики-текст]

Две идентичные модели здания при испытании на сейсмоплатформе до разрушения

Исследование сейсмостойкости необходимо для понимания действительной работы зданий и сооружений под сейсмической нагрузкой. Исследования бывают полевые (натурные) и на сейсмоплатформе. Удобнее всего испытывать модель здания на сейсмоплатформе, воссоздающей сейсмические колебания.

Сопутствующие испытания на сейсмоплатформе обычно проводятся, когда необходимо сравнить поведение различных модификаций сооружения при одном и том же сейсмическом нагружении[8].

Виброконтроль[править | править вики-текст]

Виброконтроль является системой устройств, служащих для уменьшения сейсмической нагрузки на здания. Эти устройства можно классифицировать на пассивные, активные и гибридные[9].

Сухая кладка стен[править | править вики-текст]

Сухая кладка стен в замке Солнца в Мачу-Пикчу, Перу

Первыми строителями, обратившим особое внимание на сейсмостойкость капитальных построек (в частности, стен зданий), были инки и другие древние жители Перу. Особенностями архитектуры инков является необычайно тщательная и плотная (так, что между блоками нельзя просунуть и лезвия ножа) подгонка каменных блоков (часто неправильной формы и различных размеров) друг к другу без использования строительных растворов[10]. Благодаря этому, кладка не имела резонансных частот и точек концентрации напряжений, обладая дополнительной прочностью свода. При землетрясениях небольшой и средней силы такая кладка оставалась практически неподвижной, а при сильных — камни «плясали» на своих местах, не теряя взаимного расположения и при окончании землетрясения укладывались в прежнем порядке[11]. Эти обстоятельства позволяют считать сухую кладку стен одним из первых в истории устройств пассивного виброконтроля зданий.

Сейсмический амортизатор[править | править вики-текст]

Общий вид сейсмического амортизатора[1]
Испытание сейсмического амортизатора в CSUN [2]

Сейсмический амортизатор — это разновидность сейсмической изоляции для защиты зданий и сооружений от потенциально разрушительных землетрясений[12].

Недавно сейсмические амортизаторы на роликовых подшипниках были установлены в жилом 17-этажном комплексе в Токио[13].

Инерционный демпфер[править | править вики-текст]

Инерционный демпфер на высотном здании Тайбэй 101

Обычно, инерционный демпфер (Tuned Mass Damper), называемый также инерционный гаситель, который является одним из устройств для вибрационного контроля, представляет собой массивный бетонный блок, установленный на высотном здании или другом сооружении, который колеблется с резонансной частотой данного объекта с помощью специального пружиноподобного механизма под сейсмической нагрузкой.

Для этой цели, например, инерционный демпфер небоскреба Тайбэй 101 оборудован маятниковым подвесом в виде стального шара весом 660 тонн, расположенным между 92-м и 88-м этажами. Два других 6-тонных гасителя колебаний расположены на вершине шпиля и призваны гасить колебания верхней части здания.

Гистерезисный демпфер[править | править вики-текст]

Гистерезисный демпфер (Hysteretic damper) предназначен для улучшения работы зданий и сооружений под сейсмической нагрузкой за счёт диссипации сейсмической энергии проникающей в эти здания и сооружения. Имеются, в основном, четыре группы гистерезисных демпферов, а именно:

  • Жидкостный вязкоупругий демпфер
  • Твердый вязкоупругий демпфер
  • Металлический вязкотекучий демпфер
  • Демпфер сухого трения

Каждая группа демпферов имеет свою специфику, свои достоинства и недостатки, которые следует учитывать при их применении.

Демпфирование вертикальной конфигурацией[править | править вики-текст]

Здание Transamerica Pyramid в Сан-Франциско, Калифорния

Демпфирование вертикальной конфигурацией (Building elevation control) предназначено для улучшения работы зданий и сооружений под сейсмической нагрузкой за счёт предотвращения резонансных колебаний с помощью дисперсии сейсмической энергии проникающей в эти здания и сооружения. Пирамидальные постройки не перестают привлекать внимание архитекторов и инженеров также благодаря их большей устойчивости при ураганах и землетрясениях.

Сравнительные испытания на вибростоле: слева — обычная модель здания, справа — модель, демпфированная вертикальной конфигурацией здания [3]

Конический профиль здания не является обязательным для этого метода вибрационного контроля. Аналогичный эффект может быть достигнут с помощью соответствующей конфигурации таких характеристик как массы этажей и их жесткости [6].

Многочастотный успокоитель колебаний[править | править вики-текст]

Высотное здание [4] с многочастотным успокоителем

Многочастотный успокоитель колебаний (Multi-Frequency Quieting Building System) или, сокращенно, МУК является системой устройств для вибрационного контроля, установленной на высотном здании или другом сооружении, которая колеблется с определёнными резонансными частотами данного объекта под сейсмической нагрузкой.

Каждый МУК включает в себя ряд междуэтажных диафрагм, обрамленных набором выступающих консолей с различными периодами собственных колебаний и работающих как инерционные демпферы. Использование МУК позволяет сделать здание как функциональным, так и архитектурно привлекательным.

Приподнятое основание здания[править | править вики-текст]

Реконструкция пяты свода Приподнятого основания[14]

Приподнятое основание здания (Elevated building foundation) является инструментом вибрационного контроля в сейсмостойком строительстве, который может улучшить работу зданий и сооружений под сейсмической нагрузкой.

Эффект Приподнятого основания здания (ПОЗ) основан на следующем. В результате многократных отражений, дифракций и диссипаций сейсмических волн в процессе их распространения внутри ПОЗ, передача сейсмической энергии в надстройку (верхнюю часть здания) оказывается сильно ослабленной [7].

Эта цель достигается за счёт соответствующего подбора строительных материалов, конструктивных размеров, а также конфигурации НОЗ для конкретной площадки строительства.

Свинцово-резиновая опора[править | править вики-текст]

Вибрационное испытание свинцово-резиновой опоры [5]

Свинцово-резиновая опора (Lead Rubber Bearing) — это сейсмическая изоляция, предназначенная для улучшения работы зданий и сооружений под сейсмической нагрузкой за счёт интенсивного демпфирования сейсмической энергии, проникающей через фундаменты в эти здания и сооружения. На фото справа показано испытание свинцово-резиновой опоры сделанной из резинового цилиндра со свинцовым сердечником.

Однако механически податливые системы, какими являются сейсмически изолированные сооружения со сравнительно низкой горизонтальной жесткостью, но со значительной так называемой демпфирующей силой, могут испытывать значительные перегрузки, вызванные при землетрясении как раз этой силой [8].

Пружинный демпфер[править | править вики-текст]

Пружинный демпфер под трехэтажным домом

Пружинный демпфер (springs-with-damper base isolator) является изолирующим устройством, подобным по замыслу свинцово-резиновой опоре. Два небольших трехэтажных дома с такими устройствами, расположенными в Санта Монике (Калифорния), были проэкзаменованы Нортриджским землетрясением в 1994 году [9] [10].

Фрикционно-маятниковая опора[править | править вики-текст]

Фрикционно-маятниковая опора (Friction Pendulum Bearing) — это сейсмическая изоляция, являющаяся инструментом вибрационного контроля в сейсмостойком строительстве, который может улучшить работу зданий и сооружений под сейсмической нагрузкой.

Основные элементы фрикционно-маятниковой опоры (ФМО):

  • сферически вогнутая поверхность скольжения;
  • сферический ползунок;
  • ограничительный цилиндр.

Исследование сейсмостойкости[править | править вики-текст]

Исследование сейсмостойкости включает в себя как полевые, так и аналитические и лабораторные эксперименты, имеющие целью объяснение известных фактов либо пересмотр общепринятых взглядов в свете вновь открытых фактов и теоретических разработок. Основным практическим методом получения новых знаний по-прежнему остается обследование поврежденных при землетрясениях сооружений.

Ведущими научно-исследовательскими организациями в области сейсмостойкойсти являются:

Примечания[править | править вики-текст]

  1. Building design code and earthquake insurance
  2. Seismic Pounding between Adjacent Building Structures
  3. Earthquake Protector: Shake Table Crash Testing
  4. Chopra A. K. Dynamics of Structures. — Prentice Hall, 1995. — ISBN 0138552142.
  5. И. Л. Корчинский и др. Сейсмостойкое строительство зданий. — Высшая школа, 1971.
  6. A new concept of design code for seismic performance
  7. Performance Charting for Dynamic Structural Control Projects
  8. Concurrent Shake-Table Testing (недоступная ссылка с 27-05-2015 (0 дней))
  9. Chu S. Y., Soong T. T., Reinhorn A. M. Active, Hybrid and Semi-Active Structural Control. — John Wiley & Sons. — ISBN 0470013524.
  10. Live Event Q&As
  11. Pioneers of Easter Island
  12. Earthquake-Protective Building Buffer
  13. Base Isolated Building Construction Method by Metallic Roller Bearing
  14. Elevated Foundation for Earthquake Protection of Building Structures

См. также[править | править вики-текст]

Ссылки[править | править вики-текст]