Семиугольное число

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску

Семиугольные числа — один из классов классических многоугольных чисел. Последовательность семиугольных чисел имеет вид (последовательность A000566 в OEIS):

Геометрическое представление первых семиугольных чисел
1, 7, 18, 34, 55, 81, 112, 148, 189, 235, 286, 342, 403, 540, 616, 697…

Общая формула для -го по порядку семиугольного числа:

.

Семиугольные числа, как и все прочие классические -угольные числа, можно определить как частичные суммы арифметической прогрессии, которая начинается с 1, а разность её для семиугольных чисел равна :

Ещё один способ определения семиугольного числа — рекурсивный[1]:

См. также[править | править код]

Примечания[править | править код]

Литература[править | править код]

Ссылки[править | править код]