Система линейных алгебраических уравнений

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Система линейных уравнений от трёх переменных определяет набор плоскостей. Точка пересечения является решением.

Система линейных алгебраических уравнений (линейная система, также употребляются аббревиатуры СЛАУ, СЛУ) — система уравнений, каждое уравнение в котором является линейным — алгебраическим уравнением первой степени.

В классическом варианте коэффициенты при переменных, свободные члены и неизвестные считаются вещественными числами, но все методы и результаты сохраняются (либо естественным образом обобщаются) на случай любых полей, например, комплексных чисел.

Решение систем линейных алгебраических уравнений — одна из классических задач линейной алгебры, во многом определившая её объекты и методы. Кроме того, линейные алгебраические уравнения и методы их решения играют важную роль во многих прикладных направлениях, в том числе в линейном программировании, эконометрике.

Соглашения и определения[править | править вики-текст]

Общий вид системы линейных алгебраических уравнений:


\begin{cases}
    a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\
    a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2\\
    \dots\\
    a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \\
\end{cases}

Здесь m — количество уравнений, а n — количество переменных, x_1, x_2, \dots, x_n — неизвестные, которые надо определить, коэффициенты a_{11}, a_{12}, \dots, a_{mn} и свободные члены b_1, b_2, \dots, b_m предполагаются известными. Индексы коэффициентов в системах линейных уравнений (a_{ij}) формируются по следующему соглашению: первый индекс (i) обозначает номер уравнения, второй (j) — номер переменной, при которой стоит этот коэффициент[1].

Система называется однородной, если все её свободные члены равны нулю (b_1 = b_2 = \dots b_m = 0), иначе — неоднородной.

Квадратная система линейных уравнений — система, у которой количество уравнений совпадает с числом неизвестных (m=n). Система, у которой число неизвестных больше числа уравнений является недоопределённой, такие системы линейных алгебраических уравнений также называются прямоугольными. Если уравнений больше, чем неизвестных, то система является переопределённой.

Решение системы линейных алгебраических уравнений — совокупность n чисел c_1, c_2, \dots, c_n, таких что их соответствующая подстановка вместо x_1, x_2, \dots, x_n в систему обращает все её уравнения в тождества.

Система называется совместной, если она имеет хотя бы одно решение, и несовместной, если у неё нет ни одного решения. Решения считаются различными, если хотя бы одно из значений переменных не совпадает. Совместная система с единственным решением называется определённой, при наличии более одного решения — недоопределённой.

Матричная форма[править | править вики-текст]

Система линейных алгебраических уравнений может быть представлена в матричной форме как:


\begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mn} 
\end{pmatrix}

\begin{pmatrix}
x_1 \\
x_2 \\
\vdots \\
x_n
\end{pmatrix} 
=
\begin{pmatrix}
b_1 \\
b_2 \\
\vdots \\
b_m
\end{pmatrix}

или:

Ax = b.

Здесь A — это матрица системы, x — столбец неизвестных, а b — столбец свободных членов. Если к матрице A приписать справа столбец свободных членов, то получившаяся матрица называется расширенной.

Теорема Кронекера — Капелли устанавливает необходимое и достаточное условие совместности системы линейных алгебраических уравнений посредством свойств матричных представлений: система совместна тогда и только тогда, когда ранг её матрицы совпадает с рангом расширенной матрицы.

Эквивалентные системы линейных уравнений[править | править вики-текст]

Системы линейных уравнений называются эквивалентными, если множество их решений совпадает, то есть любое решение одной системы одновременно является решением другой, и наоборот.

Систему, эквивалентную данной, можно получить, в частности, заменив одно из уравнений на это уравнение, умноженное на любое отличное от нуля число. Эквивалентную систему можно получить также, заменив одно из уравнений суммой этого уравнения с другим уравнением системы. В общем, замена уравнения системы на линейную комбинацию уравнений даёт систему, эквивалентную исходной.

Система линейных алгебраических уравнений  A \bold{x} \ = \bold{b} эквивалентна системе   C A \bold{x} \ = C \bold{b} , где C — невырожденная матрица. В частности, если сама матрица A — невырожденная, и для неё существует обратная матрица  A^{-1} , то решение системы уравнений можно формально записать в виде  \bold{x} = A^{-1} \bold{b} .

Методы решения[править | править вики-текст]

Прямые методы дают алгоритм, по которому можно найти точное решение систем линейных алгебраических уравнений. Итерационные методы основаны на использовании повторяющегося процесса и позволяют получить решение в результате последовательных приближений.

Некоторые прямые методы:

Итерационные методы устанавливают процедуру уточнения определённого начального приближения к решению. При выполнении условий сходимости они позволяют достичь любой точности просто повторением итераций. Преимущество этих методов в том, что часто они позволяют достичь решения с заранее заданной точностью быстрее, а также позволяют решать большие системы уравнений. Суть этих методов состоит в том, чтобы найти неподвижную точку матричного уравнения

 \bold{x} = A^\prime \bold{x} + \bold{b}^\prime ,

эквивалентного начальной системе линейных алгебраических уравнений. При итерации  \bold{x} в правой части уравнения заменяется, например, в методе Якоби (метод простой итерации) приближение, найденное на предыдущем шаге:

 \bold{x}_{n+1} = A^\prime \bold{x}_n + \bold{b}^\prime .

Итерационные методы делятся на несколько типов, в зависимости от применяемого подхода:

  • Основанные на расщеплении: (M-N)\bold{x}=\bold{b}\Leftrightarrow M\bold{x}=N\bold{x}+\bold{b} \Rightarrow M\bold{x}^{n+1}=N\bold{x}^n+\bold{b}
  • Вариационного типа: A\bold{x}=\bold{b}\Rightarrow \|A\bold{x}-\bold{b}\|\rightarrow \min
  • Проекционного типа: A\bold{x}=\bold{b}\Rightarrow (A\bold{x},\bold{m})=(\bold{b},\bold{m}) \forall\bold{m}

Среди итерационных методов:

Примечания[править | править вики-текст]

  1. Ильин В. А., Позняк Э. Г. Линейная алгебра: Учебник для вузов. — 6-е изд., стер. — М.: Физматлит, 2004. — 280 с.
  2. Вержбицкий В. М. Основы численных методов. — М.: Высшая школа, 2009. — С. 80—84. — 840 с. — ISBN 9785060061239.

Ссылки[править | править вики-текст]