Система линейных алгебраических уравнений

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Система m линейных алгебраических уравнений с n неизвестными (или, линейная система, также употребляется аббревиатура СЛА́У) в линейной алгебре — это система уравнений вида


\begin{cases}
    a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\
    a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2\\
    \dots\\
    a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \\
\end{cases}
(1)
Система линейных уравнений от трёх переменных определяет набор плоскостей. Точка пересечения является решением.

Здесь m — количество уравнений, а n — количество неизвестных. x1, x2, …, xn — неизвестные, которые надо определить. a11, a12, …, amn — коэффициенты системы — и b1, b2, … bm — свободные члены — предполагаются известными[1]. Индексы коэффициентов (aij) системы обозначают номера уравнения (i) и неизвестного (j), при котором стоит этот коэффициент, соответственно[2].

Система (1) называется однородной, если все её свободные члены равны нулю (b1 = b2 = … = bm = 0), иначе — неоднородной.

Система (1) называется квадратной, если число m уравнений равно числу n неизвестных.

Решение системы (1) — совокупность n чисел c1, c2, …, cn, таких что подстановка каждого ci вместо xi в систему (1) обращает все её уравнения в тождества.

Система (1) называется совместной, если она имеет хотя бы одно решение, и несовместной, если у неё нет ни одного решения.

Совместная система вида (1) может иметь одно или более решений.

Решения c1(1), c2(1), …, cn(1) и c1(2), c2(2), …, cn(2) совместной системы вида (1) называются различными, если нарушается хотя бы одно из равенств:

c1(1) = c1(2), c2(1) = c2(2), …, cn(1) = cn(2).

Совместная система вида (1) называется определённой, если она имеет единственное решение; если же у неё есть хотя бы два различных решения, то она называется неопределённой. Если уравнений больше, чем неизвестных, она называется переопределённой.

Матричная форма[править | править исходный текст]

Система линейных уравнений может быть представлена в матричной форме как:


\begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mn} 
\end{pmatrix}

\begin{pmatrix}
x_1 \\
x_2 \\
\vdots \\
x_n
\end{pmatrix} 
=
\begin{pmatrix}
b_1 \\
b_2 \\
\vdots \\
b_m
\end{pmatrix}

или:

Ax = b.

Здесь A — это матрица системы, x — столбец неизвестных, а b — столбец свободных членов. Если к матрице A приписать справа столбец свободных членов, то получившаяся матрица называется расширенной.

Эквивалентные системы линейных уравнений[править | править исходный текст]

Системы линейных уравнений называются эквивалентными, если множество их решений совпадает, то есть любое решение одной системы одновременно является решением другой, и наоборот.

Систему, эквивалентную данной, можно получить, в частности, заменив одно из уравнений на это уравнение, умноженное на любое отличное от нуля число. Эквивалентную систему можно получить также, заменив одно из уравнений суммой этого уравнения с другим уравнением системы. В общем, замена уравнения системы на линейную комбинацию уравнений даёт систему, эквивалентную исходной.

Система линейных алгебраических уравнений

 A \bold{x} \ = \bold{b}

эквивалентна системе

  C A \bold{x} \ = C \bold{b} ,

где C — невырожденная матрица.

В частности, если сама матрица A — невырожденная, и для неё существует обратная матрица  A^{-1} , то решение системы уравнений можно формально записать в виде

 \bold{x} = A^{-1} \bold{b} .

Методы решения[править | править исходный текст]

Прямые методы дают алгоритм, по которому можно найти точное решение СЛАУ. И если бы точность была абсолютной, они бы нашли его. Реальная ЭВМ, естественно, работает с погрешностью, поэтому решение будет приближённым.

Итерационные методы основаны на использовании повторяющегося процесса и позволяют получить решение в результате последовательных приближений.

Прямые методы[править | править исходный текст]

Итерационные методы[править | править исходный текст]

Итерационные методы устанавливают процедуру уточнения определённого начального приближения к решению. При выполнении условий сходимости они позволяют достичь любой точности просто повторением итераций. Преимущество этих методов в том, что часто они позволяют достичь решения с заранее заданной точностью быстрее, а также позволяют решать большие системы уравнений. Суть этих методов состоит в том, чтобы найти неподвижную точку матричного уравнения

 \bold{x} = A^\prime \bold{x} + \bold{b}^\prime ,

эквивалентного начальной системе линейных алгебраических уравнений. При итерации  \bold{x} в правой части уравнения заменяется, например, в методе Якоби (метод простой итерации) приближение, найденное на предыдущем шаге:

 \bold{x}_{n+1} = A^\prime \bold{x}_n + \bold{b}^\prime .

Итерационные методы делятся на несколько типов, в зависимости от применяемого подхода:

  • Основанные на расщеплении: (M-N)\bold{x}=\bold{b}\Leftrightarrow M\bold{x}=N\bold{x}+\bold{b} \Rightarrow M\bold{x}^{n+1}=N\bold{x}^n+\bold{b}
  • Вариационного типа: A\bold{x}=\bold{b}\Rightarrow \|A\bold{x}-\bold{b}\|\rightarrow \min
  • Проекционного типа: A\bold{x}=\bold{b}\Rightarrow (A\bold{x},\bold{m})=(\bold{b},\bold{m}) \forall\bold{m}

Среди итерационных методов можно отметить самые популярные:

См. также[править | править исходный текст]

Примечания[править | править исходный текст]

  1. В рамках данной статьи коэффициенты системы, свободные члены и неизвестные считаются действительными числами, хотя они могут быть комплексными или даже сложными математическими объектами с условием, что для них определены операции умножения и сложения.
  2. Ильин В. А., Позняк Э. Г. Линейная алгебра: Учебник для вузов. — 6-е изд., стер. — М.: ФИЗМАТЛИТ, 2004. — 280 с.
  3. Вержбицкий В. М. Основы численных методов. — М.: Высшая школа, 2009. — С. 80—84. — 840 с. — ISBN 9785060061239

Ссылки[править | править исходный текст]