Сканирующий атомно-силовой микроскоп

Материал из Википедии — свободной энциклопедии
Это старая версия этой страницы, сохранённая LankLinkBot (обсуждение | вклад) в 20:33, 3 июля 2010 (Bot: добавление заголовков в сноски; исправление дублирующихся сносок). Она может серьёзно отличаться от текущей версии.
Перейти к навигации Перейти к поиску

Атомно-силовой микроскоп (АСМ, англ. AFM — atomic-force microscope) — сканирующий зондовый микроскоп высокого разрешения, основанный на взаимодействии зонда кантилевера с поверхностью исследуемого образца.

Схема работы атомно-силового микроскопа

Обычно под взаимодействием понимается притяжение или отталкивание зонда кантилевера, вызванное силами Ван-дер Ваальса. При использовании специальных кантилеверов можно изучать электрические и магнитные свойства поверхности. В отличие от сканирующего туннельного микроскопа, с помощью АСМ можно исследовать как проводящие, так и непроводящие поверхности. Кроме того, АСМ способен измерять рельеф образца, погружённого в жидкость, что позволяет работать с органическими молекулами, включая ДНК. Пространственное разрешение атомно-силового микроскопа зависит от радиуса кривизны кончика зонда. Разрешение достигает атомарного по вертикали и существенно превышает его по горизонтали.

История изобретения

Атомно-силовой микроскоп был изобретён в 1986 году Гердом Биннигом и Кристофом Гербером в США. Атомно-силовой микроскоп применяется для измерения рельефа поверхности, модификации поверхности, а также для манипулирования микро- и нанообъектами на поверхности.

Принцип работы

Кантилевер в сканирующем электронном микроскопе (увеличение 1000×)

Атомно-силовой микроскоп представляет собой систему образец + игла (кантилевер) [1]. На малых расстояниях между двумя атомами, один на подложке, другой на острие, при расстоянии около одного ангстрема действуют силы отталкивания, а на больших — силы притяжения. Величина этого усилия экспоненциально зависит от расстояния образец-игла. Отклонения зонда при действии близко расположенных атомов регистрируются при помощи измерителя наноперемещений, в частности, используют оптические, ёмкостные или туннельные сенсоры. Добавив к этой системе устройство развёртки по осям X и Y, получают сканирующий АСМ.

Основные технические сложности при создании микроскопа:

  • Создание иглы, заострённой действительно до атомных размеров.
  • Обеспечение механической (в том числе тепловой и вибрационной) стабильности на уровне лучше 0,1 ангстрема.
  • Создание детектора, способного надёжно фиксировать столь малые перемещения.
  • Создание системы развёртки с шагом в доли ангстрема.
  • Обеспечение плавного сближения иглы с поверхностью.

Особенности работы

В сравнении с растровым электронным микроскопом (РЭМ) атомно-силовой микроскоп обладает рядом преимуществ. Так, в отличие от РЭМ, который даёт псевдотрёхмерное изображение поверхности образца, АСМ позволяет получить истинно трёхмерный рельеф поверхности. Кроме того, непроводящая поверхность, рассматриваемая с помощью АСМ, не требует нанесения проводящего металлического покрытия, которое часто приводит к заметной деформации поверхности. Для нормальной работы РЭМ требуется вакуум, в то время как большинство режимов АСМ могут быть реализованы на воздухе или даже в жидкости. Данное обстоятельство открывает возможность изучения биомакромолекул и живых клеток. В принципе, АСМ способен дать более высокое разрешение, чем РЭМ. Так было показано, что АСМ в состоянии обеспечить реальное атомное разрешение в условиях сверхвысокого вакуума. Сверхвысоковакуумный АСМ по разрешению сравним со сканирующим туннельным микроскопом и просвечивающим электронным микроскопом.

К недостатку АСМ при его сравнении с РЭМ также следует отнести небольшой размер поля сканирования. РЭМ в состоянии просканировать область поверхности размером в несколько миллиметров в латеральной плоскости с перепадом высот в несколько миллиметров в вертикальной плоскости. У АСМ максимальный перепад высот составляет несколько микрон, а максимальное поле сканирования в лучшем случае порядка 150×150 микрон². Другая проблема заключается в том, что при высоком разрешении качество изображения определяется радиусом кривизны кончика зонда, что при неправильном выборе зонда приводит к появлению артефактов на получаемом изображении.

Обычный АСМ не в состоянии сканировать поверхность также быстро, как это делает РЭМ. Для получения АСМ-изображения, требуется от нескольких минут до нескольких часов, в то время как РЭМ после откачки способен работать практически в реальном масштабе времени, хотя и с относительно невысоким качеством. Из-за низкой скорости развёртки АСМ получаемые изображения оказываются искажёнными тепловым дрейфом,[2][3] что уменьшает точность измерения элементов сканируемого рельефа. Для увеличения быстродействия АСМ было предложено несколько конструкций,[4][5] среди которых можно выделить зондовый микроскоп, названный видеоАСМ. ВидеоАСМ обеспечивает получение удовлетворительного качества изображений поверхности с частотой телевизионной развёртки, что даже быстрее, чем на обычном РЭМ. Для коррекции вносимых термодрейфом искажений было предложено несколько методов.[2][3]

Кроме термодрейфа АСМ-изображения могут также быть искажены из-за таких свойств пьезокерамики, как нелинейность, крип и гистерезис [6] и перекрёстными паразитными связями, действующими между X, Y, Z-элементами сканера. Для исправления искажений в реальном масштабе времени современные АСМ используют программное обеспечение (например, особенность-ориентированное сканирование) либо сканеры, снабжённые замкнутыми следящими системами, в состав которых входят линейные датчики положения. Некоторые АСМ вместо сканера в виде пьезотрубки используют XY и Z-элементы, механически несвязанные друг с другом, что позволяет исключить часть паразитных связей.

АСМ можно использовать для определения типа атома в кристаллической решётке.[7]

Обработка полученной информации и восстановление полученных изображений

Как правило, снятое на сканирующем зондовом микроскопе изображение трудно поддается расшифровке из-за присущих данному методу искажений. Практически всегда результаты первоначального сканирования подвергаются математической обработке. Для этого используется программное обеспечение непосредственно поставляемое с СЗМ. Существует и программное обеспечение распространяемое по GNU лицензии. Например, Gwyddion[8]

Современное состояние и развитие сканирующей зондовой микроскопии

В настоящее время сканирующий зондовые микроскопы нашли применение практически во всех областях науки. В физике, химии, биологии используют в качестве инструмента исследования АСМ. В частности, такие междисциплинарные науки, как биофизика, материаловедение, биохмия, фармацевтика, нанотехнологии, физика и химия поверхности, электрохимия, исследование коррозии, электроника (например, МЭМС), фотохимия и многие другие. Перспективным направлением считается совмещение сканирующих зондовых микроскопов с другими традиционными и современными методами исследованиями, а также создание принципиально новых приборов. Например, совмещение СЗМ с оптическими микроскопами (традиционными и конфокальными микроскопами)[9][10][11], электронными микроскопами[12], спектрометрами (например, спектрометрами комбинационного (рамановского) рассеяния и флюоресцентными)[13][14][15], ультрамикротомами[16].

Интересные следствия

Манипулятор АСМ и СТМ позволяет при габаритах в несколько сантиметров передвигать иглу с разрешением лучше 0,1 Ǻ. Если бы промышленный робот обладал подобной точностью перемещений при габаритах около метра, то иголкой, зажатой в манипуляторах, он мог бы нарисовать окружность диаметром в несколько нанометров.

Температурный коэффициент линейного расширения большинства материалов около 10−6. При размерах манипулятора в несколько сантиметров изменение температуры на 0,01° приводит к перемещению иглы вследствие теплового дрейфа на 1 Ǻ.

Производители АСМ в России и СНГ в алфавитном порядке

ООО «АИСТ-НТ»

ООО «АИСТ-НТ» — российская компания, созданная в Зеленограде в 2007 году группой разработчиков, вышедших из ЗАО «Нанотехнология МДТ». Занимается производством сканирующих зондовых микроскопов.[17] В настоящее время компания производит 2 уникальных[источник не указан 5157 дней] прибора, а также аксессуары и расходные материалы для СЗМ.

ООО «Нано Скан Технология»

ООО «Нано Скан Технология» — компания, основанная в Долгопрудном в 2007 году. Специализируется на разработке и производстве сканирующих зондовых микроскопов и комплексов на их основе для научных исследований и образования.[18] В настоящее время компания разработала и производит 2 модели сканирующих зондовых микроскопов исследовательского класса и 3 научно-исследовательских комплекса на основе СЗМ.

«Микротестмашины», Беларусь

Компания, производящая оборудование для научных исследований, в том числе одну модель сканирующего зондового микроскопа. [19]

ЗАО «Нанотехнология МДТ»

ЗАО «Нанотехнология МДТ» — российская компания, созданная в Зеленограде в 1989 году. Занимается производством сканирующих зондовых микроскопов для образования, научных исследований и мелкосерийного производства.[20] В настоящее время компания производит 4 модельных ряда, а также широкий ассортимент аксессуаров и расходных материалов: кантилеверы, калибровочные решетки, тестовые образцы.

ООО НПП «Центр перспективных технологий»

ООО НПП «Центр перспективных технологий» — российское предприятие, работающее в области нанотехнологий. Создано в 1990 г. Специализируется на производстве сканирующих зондовых микроскопов «ФемтоСкан», атомных весов и аксессуаров, а также на разработке программного обеспечения.[21] Является первой компанией, предложившей комплекс программного обеспечения для управления сканирующим зондовым микроскопом через Интернет.

Примечания

  1. Описание принципа АСМ
  2. 1 2 R. V. Lapshin (2004). "Feature-oriented scanning methodology for probe microscopy and nanotechnology" (PDF). Nanotechnology. UK: IOP. 15 (9): 1135–1151. doi:10.1088/0957-4484/15/9/006. ISSN 0957-4484.
  3. 1 2 R. V. Lapshin (2007). "Automatic drift elimination in probe microscope images based on techniques of counter-scanning and topography feature recognition" (PDF). Measurement Science and Technology. UK: IOP. 18 (3): 907–927. doi:10.1088/0957-0233/18/3/046. ISSN 0957-0233.
  4. G. Schitter, M. J. Rost (2008). "Scanning probe microscopy at video-rate" (PDF). Materials Today. UK: Elsevier (special issue): 40–48. doi:10.1016/S1369-7021(09)70006-9. ISSN 1369-7021.
  5. R. V. Lapshin, O. V. Obyedkov (1993). "Fast-acting piezoactuator and digital feedback loop for scanning tunneling microscopes" (PDF). Review of Scientific Instruments. USA: AIP. 64 (10): 2883–2887. doi:10.1063/1.1144377. ISSN 0034-6748.
  6. R. V. Lapshin (1995). "Analytical model for the approximation of hysteresis loop and its application to the scanning tunneling microscope" (PDF). Review of Scientific Instruments. USA: AIP. 66 (9): 4718–4730. doi:10.1063/1.1145314. ISSN 0034-6748. (имеется перевод на русский).
  7. Sugimoto Y. et al., Chemical identification of individual surface atoms by atomic force microscopy, Nature 446, 66 (2007) doi:10.1038/nature05530.
  8. Свободное программное обеспечение для обработки СЗМ изображений
  9. Комплекс для исследований в области биологии и материаловедения, сочетающий в себе СЗМ и оптический микроскоп
  10. Комплекс для исследований на основе прямого или инвертированного микроскопа, сочетающий в себе СЗМ и оптический микроскоп
  11. Комплекс для исследований в области биологии, сочетающий в себе СЗМ и оптический микроскоп
  12. Комплекс для исследований совмещающий электронный и сканирующий зондовый микроскопы
  13. Комплекс на основе СЗМ, оптического микроскопа и спектрометра
  14. Комплекс СЗМ с конфокальным рамановским и флюоресцентным спектрометром
  15. Исследовательский комплекс совмещающий СЗМ, конфокальный лазерный микроскоп, рамановский и флюоресцентный спектрометры, оптический микроскоп
  16. АСМ установленный в криоультрамикротом
  17. Официальный сайт ООО «АИСТ-НТ».
  18. Официальный сайт ООО «Нано Скан Технология».
  19. Microtestmachines Co. ::: SPM NT-206
  20. Официальный сайт ЗАО «Нанотехнология МДТ».
  21. Официальный сайт ООО НПП «Центр перспективных технологий».

Литература

  • R. Wiesendanger, Scanning Probe Microscopy and Spectroscopy, Cambridge Universtiy Press, Cambridge (1994)
  • D. Sarid, Scanning Force Microscopy, Oxford Series in Optical and Imaging Sciences, Oxford University Press, New York (1991)
  • R. Dagani, Individual Surface Atoms Identified, Chemical & Engineering News, 5 March 2007, page 13. Published by American Chemical Society
  • Q. Zhong, D. Innis, K. Kjoller, V. B. Elings, Surf. Sci. Lett. 290, L688 (1993).
  • V. J. Morris, A. R. Kirby, A. P. Gunning, Atomic Force Microscopy for Biologists. (Book) (December 1999) Imperial College Press.
  • J. W. Cross SPM — Scanning Probe Microscopy Website
  • P. Hinterdorfer, Y. F. Dufrêne, Nature Methods, 3, 5 (2006)
  • F. Giessibl, Advances in Atomic Force Microscopy, Reviews of Modern Physics 75 (3), 949—983 (2003).
  • R. H. Eibl, V.T. Moy, Atomic force microscopy measurements of protein-ligand interactions on living cells. Methods Mol Biol. 305:439-50 (2005)
  • P. M. Hoffmann, A. Oral, R. A. Grimble, H. Ö. Özer, S. Jeffery, J. B. Pethica, Proc. Royal Soc. A 457, 1161 (2001).
  • Eibl RH, First measurement of physiologic VLA-4 activation by SDF-1 at the single-molecule level on a living cell. In: Advances in Single Molecule Research for Biology and Nanoscience. Hinterdorfer P, Schuetz G, Pohl P (Editors),Trauner, ISBN (2007).
  • West P, Introduction to Atomic Force Microscopy: Theory, Practice and Applications — www.AFMUniversity.org
  • Суслов А. А., Чижик С. А. Сканирующие зондовые микроскопы (обзор) // Материалы, Технологии, Инструменты — Т.2 (1997), № 3, С. 78-89

Ссылки

См. также

Шаблон:Link GA