Устойчивость (динамические системы): различия между версиями

Перейти к навигации Перейти к поиску
м
Нет описания правки
м
{{стиль}}{{нет преамбулы}}<!-- нет явной дефиниции-->
В [[математика|математике]] решение [[дифференциальные уравнения|дифференциального уравнения]] (или, шире, траектория в [[Фазовое пространство|фазовом пространстве]] точки состояния [[динамическая система|динамической системы]]) называется '''устойчивым''', если поведение решений, с условиями, близкими к начальным, «не сильно отличается» от поведения исходного решения. Слова «не сильно отличается» при этом можно формализовать по-разному, получая разные формальные определения устойчивости: устойчивость по [[Ляпунов, Александр Михайлович|Ляпунову]], асимптотическую устойчивость и т.д. (см. ниже). Обычно рассматривается задача об устойчивости тривиального решения в [[особая точка (дифференциальные уравнения)|особой точке]], поскольку задача об устойчивости произвольной траектории сводится к данной, путём замены неизвестной функции.
[[Файл:4979e03f8a70f821bf51b7ef08bdc437-1000.jpg|мини|[[Ляпунов, Александр Михайлович]] - создатель теории устойчивости]]
 
== Постановка задачи устойчивости [[Динамическая система|динамических систем]] ==
Пусть <math>\Omega</math> — область пространства <math>\mathbb{R}^n</math>, содержащая начало координат, <math>I = [\tau; \infty)</math>, где <math>\tau \in \mathbb{R}^1</math>. Рассмотрим систему (1) вида:
 
При любых <math>(t_0, x_0) \in I \times \Omega</math> существует единственное решение ''x(t, t<sub>0</sub>, x<sub>0</sub>)'' системы (1), удовлетворяющее начальным условиям ''x(t<sub>0</sub>, t<sub>0</sub>, x<sub>0</sub>) = x<sub>0</sub>.'' Будем предполагать, что решение ''x(t, t<sub>0</sub>, x<sub>0</sub>)'' определено на интервале <math>J^+ = [t_0; \infty)</math>, причём <math>J^+ \subset I</math>.
[[Файл:Bellman-richard-545.jpg|мини|[[Беллман, Ричард]]]]
 
== Устойчивость по Ляпунову ==
Тривиальное решение ''x = 0'' системы (1) называется устойчивым по [[Ляпунов, Александр Михайлович|Ляпунов]]у, если для любых <math>t_0 \in I</math> и <math>\varepsilon > 0</math> существует <math>\delta > 0</math>, зависящее только от ''&epsilon;'' и ''t<sub>0</sub>'' и не зависящее от ''t'', такое, что для всякого ''x<sub>0</sub>'', для которого <math>\|x_0\| < \delta</math>, решение ''x'' системы с начальными условиями x(t<sub>0</sub>) = x<sub>0</sub> продолжается на всю полуось t > t<sub>0</sub> и удовлетворяет неравенству <math>\|x(t)\| < \varepsilon</math>.

Навигация