Произведение Кронекера: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[отпатрулированная версия][отпатрулированная версия]
Содержимое удалено Содержимое добавлено
Строка 6: Строка 6:
Если ''A'' — матрица размера ''m''×''n'', ''B'' — матрица размера ''p''×''q'', тогда произведением Кронекера есть блочная матрица размера ''mp''×''nq''
Если ''A'' — матрица размера ''m''×''n'', ''B'' — матрица размера ''p''×''q'', тогда произведением Кронекера есть блочная матрица размера ''mp''×''nq''
: <math>A \otimes B = \begin{bmatrix} a_{11} B & \cdots & a_{1n}B \\ \vdots & \ddots & \vdots \\ a_{m1} B & \cdots & a_{mn} B \end{bmatrix}.</math>
: <math>A \otimes B = \begin{bmatrix} a_{11} B & \cdots & a_{1n}B \\ \vdots & \ddots & \vdots \\ a_{m1} B & \cdots & a_{mn} B \end{bmatrix}.</math>

В более общем случае имеем

<math>\mathbf{A}\otimes\mathbf{B} = \begin{bmatrix}
a_{11} b_{11} & a_{11} b_{12} & \cdots & a_{11} b_{1q} &
\cdots & \cdots & a_{1n} b_{11} & a_{1n} b_{12} & \cdots & a_{1n} b_{1q} \\
a_{11} b_{21} & a_{11} b_{22} & \cdots & a_{11} b_{2q} &
\cdots & \cdots & a_{1n} b_{21} & a_{1n} b_{22} & \cdots & a_{1n} b_{2q} \\
\vdots & \vdots & \ddots & \vdots & & & \vdots & \vdots & \ddots & \vdots \\
a_{11} b_{p1} & a_{11} b_{p2} & \cdots & a_{11} b_{pq} &
\cdots & \cdots & a_{1n} b_{p1} & a_{1n} b_{p2} & \cdots & a_{1n} b_{pq} \\
\vdots & \vdots & & \vdots & \ddots & & \vdots & \vdots & & \vdots \\
\vdots & \vdots & & \vdots & & \ddots & \vdots & \vdots & & \vdots \\
a_{m1} b_{11} & a_{m1} b_{12} & \cdots & a_{m1} b_{1q} &
\cdots & \cdots & a_{mn} b_{11} & a_{mn} b_{12} & \cdots & a_{mn} b_{1q} \\
a_{m1} b_{21} & a_{m1} b_{22} & \cdots & a_{m1} b_{2q} &
\cdots & \cdots & a_{mn} b_{21} & a_{mn} b_{22} & \cdots & a_{mn} b_{2q} \\
\vdots & \vdots & \ddots & \vdots & & & \vdots & \vdots & \ddots & \vdots \\
a_{m1} b_{p1} & a_{m1} b_{p2} & \cdots & a_{m1} b_{pq} &
\cdots & \cdots & a_{mn} b_{p1} & a_{mn} b_{p2} & \cdots & a_{mn} b_{pq}
\end{bmatrix}. </math>

Если '''A''' и '''B''' представляют собой линейные преобразования '''V'''<sub>1</sub> → '''W'''<sub>1</sub> и '''V'''<sub>2</sub> → '''W'''<sub>2</sub>, соответственно, то '''A''' ⊗ '''B''' представляет собой [[тензорное произведение]] двух отображений, '''V'''<sub>1</sub> ⊗ '''V'''<sub>2</sub> → '''W'''<sub>1</sub> ⊗ '''W'''<sub>2</sub>.


=== Пример ===
=== Пример ===

Версия от 11:17, 6 сентября 2011

Произведение Кронекера — бинарная операция над матрицами произвольного размера, обозначается . Результатом является блочная матрица.

Произведение Кронекера не следует путать с обычным умножением матриц. Операция названа в честь немецкого математика Леопольда Кронекера.

Определение

Если A — матрица размера m×n, B — матрица размера p×q, тогда произведением Кронекера есть блочная матрица размера mp×nq

В более общем случае имеем

Если A и B представляют собой линейные преобразования V1W1 и V2W2, соответственно, то AB представляет собой тензорное произведение двух отображений, V1V2W1W2.

Пример

.

Билинейность, ассоциативность и некоммутативность

где A, B и C есть матрицами, а k — скаляр.

Если A и B квадратные матрицы, тогда A B и B A являются перестановочно подобными, то есть, P = QT.

Транспонирование

Операция транспонирования является дистрибутивной относительно произведения Кронекера

Смешанное произведение

  • Если A, B, C и D являются матрицами такого размера, что существуют произведения AC и BD, тогда
  • A B является обратной тогда и только тогда, когда A и B являются обратными, и тогда

Сумма и экспонента Кронекера

  • Если A — матрица размера n×n, B — матрица размера m×m и  — единичная матрица размера k×k тогда можно определить сумму Кронекера как
  • Также справедливо

Спектр, след и определитель

  • Если A и B квадратные матрицы размера n и q соответственно. Если λ1, …, λn — собственные значения матрицы A и μ1, …, μq собственные значения матрицы B. Тогда собственными значениями A B являются

Сингулярное разложение и ранг

Ненулевые сингулярные значения матрицы B:

Тогда произведение Кронекера A B имеет rArB ненулевых сингулярных значений

  • Ранг матрицы равен количеству ненулевых сингулярных значений, значений