Изогональное сопряжение: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[отпатрулированная версия][отпатрулированная версия]
Содержимое удалено Содержимое добавлено
мНет описания правки
Строка 36: Строка 36:


== Пары изогонально сопряжённых точек ==
== Пары изогонально сопряжённых точек ==
[[File:Ортоцентр и центр описанной окружности изогонально сопряжены.svg|thumb|Ортоцентр <math>H</math> и центр описанной окружности <math>O</math> изогонально сопряжены.]]
* Центр [[Описанная окружность|описанной окружности]] и [[ортоцентр]].
* Центр [[Описанная окружность|описанной окружности]] и [[ортоцентр]] (см. рисунок).
* [[Барицентр|Точка пересечения медиан]] и [[точка Лемуана]] (точка пересечения симедиан).
* [[Барицентр|Точка пересечения медиан]] и [[точка Лемуана]] (точка пересечения симедиан).
* [[Точка Жергонна]] и центр отрицательной гомотетии вписанной и описанной окружности.
* [[Точка Жергонна]] и центр отрицательной гомотетии вписанной и описанной окружности.

Версия от 13:27, 16 июня 2018

Точки и изогонально сопряжены
Преобразование над точками внутри треугольника

Изогона́льное сопряже́ние — геометрическое преобразование, получаемое отражением прямых, соединяющих исходные точки с вершинами заданного треугольника относительно биссектрис углов треугольника.

Определение

Точки и называются изогонально сопряжёнными (устаревшие названия — изогональными, обратными[1]) в треугольнике , если , , . Корректность данного определения можно доказать через теорему Чевы в синусной форме, существует и чисто геометрическое доказательство корректности этого определения. Изогональное сопряжение — преобразование, ставящее точке в соответствие изогонально сопряжённую ей. На всей плоскости за исключением прямых, содержащих стороны треугольника, изогональное сопряжение является взаимно-однозначным отображением.

Свойства

  • Изогональное сопряжение оставляет на месте только центры вписанной и вневписанных окружностей.
  • Точка, изогонально сопряжённая точке на описанной окружности — бесконечно удалённая. Направление, задаваемое этой точкой, перпендикулярно прямой Симсона исходной точки.
  • Если точки , , симметричны точке относительно сторон треугольника, то центр описанной окружности изогонально сопряжён точке .
  • Если в треугольник вписан эллипс, то его фокусы изогонально сопряжены.

Пары изогонально сопряженных линий

Пары изогонально сопряжённых точек

Ортоцентр и центр описанной окружности изогонально сопряжены.

Координатная запись

В барицентрических координатах изогональное сопряжение записывается как:

,

где , ,  — длины сторон треугольника. В трилинейных координатах его запись имеет форму:

,

поэтому они удобны при работе с изогональным сопряжением. В других координатах запись изогонального сопряжения более громоздка.

Вариации и обобщения

Аналогично можно определить изогональное сопряжение относительно многоугольника. Фокусы эллипсов, вписанных в многоугольник, также будут изогонально сопряжены. Однако не для всех точек изогонально сопряжённая точка будет определена: так, в четырёхугольнике геометрическое место точек, для которых изогональное сопряжение определено, есть некоторая кривая третьего порядка; для пятиугольника будет существовать лишь одна пара изогонально сопряжённых точек (фокусы единственного вписанного в него эллипса), а в многоугольниках с бо́льшим числом вершин в общем случае изогонально сопряжённых точек не будет.

Можно определить также изогональное сопряжение в тетраэдре, в трилинейных координатах оно будет записываться аналогично плоскому изогональному сопряжению[4].

Следствия

Примечания

  1. Д. Ефремов. Новая геометрия треугольника. Одесса, 1902
  2. Зетель С.И. Новая геометрия треугольника. Пособие для учителей. 2-е издание.. — М.: Учпедгиз, 1962. — С. 97, п. 80.
  3. Зетель С.И. Новая геометрия треугольника. Пособие для учителей. 2-е издание.. — М.: Учпедгиз, 1962. — С. 97, п. 80.
  4. Изогональное сопряжение в тетраэдре и его гранях

См. также