Состояние Фока

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Фоковское состояние— это квантовомеханическое состояние с точно определённым количеством частиц. Названо в честь советского физика В. А. Фока.

Свойства фоковских состояний[править | править вики-текст]

В фоковском состоянии , находится n частиц, n — целое число.

В основном состоянии нет ни одного кванта. Часто также называют вакуумным состоянием.

При рассмотрении вторичного квантования состояния Фока формируют самый удобный базис пространства Фока.

Действие операторов рождения и уничтожение на них весьма просто. Они подчиняются следующим соотношениям статистики Бозе — Эйнштейна (случай частиц с целым спином):

где и  — являются операторами уничтожения и рождения, соответственно. Похожие соотношения выполняются для статистики Ферми — Дирака (для частиц с полуцелым спином).

Из этих соотношений следует

и

т.е. число частиц в фоковском состоянии не имеет флуктуаций.

Энергия состояний[править | править вики-текст]

Фоковские состояния являются собственными функциями гамильтониана поля :

где — энергия соответствующего состояния .

При подстановке гамильтониана в приведенное выше выражение, получим:

Следовательно, энергия состояния равна , где есть частота поля.

Еще раз отметим, что энергия нулевого (основного) состояния с отлична от нуля, и её называют нулевой энергией.

Вакуумные флуктуации[править | править вики-текст]

См. также Частота Раби

Вакуумное состояние, или , есть состояние с наименьшей энергией. Для него

Электрическое и магнитное поля и векторный потенциал имеют одинаковый вид:

 

Легко заметить, что величина оператора поля этого состояния исчезает в вакуумном состоянии:

Однако, можно показать, что квадрат оператора поля не равен нулю.

Вакуумные флуктуации ответственны за многие интересные явления в квантовой оптике, например такие как сдвиг Лэмба и сила Казимира[1].

  1. en:Casimir effect

См. также[править | править вики-текст]

Ссылки[править | править вики-текст]

  • Ландау Л. Д., Лифшиц Е. М. Квантовая механика (нерелятивистская теория). — Издание 6-е, исправленное. — М.: Физматлит, 2004. — 800 с. — («Теоретическая физика», том III). — ISBN 5-9221-0530-2.
  • Швебер С., Введение в релятивистскую квантовую теорию поля, [пер. с англ. ], M., 1963.
  • Хоружий С. С., Введение в алгебраическую квантовую теорию поля, М., 1986.