Спектральная плотность мощности

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Спектра́льная пло́тность мо́щности (СПМ) в физике и обработке сигналов — функция, описывающая распределение мощности сигнала в зависимости от частоты, то есть мощность, приходящаяся на единичный интервал частоты. Имеет размерность мощности, делённой на частоту, то есть энергии. Например, в Международной системе единиц (СИ): Вт/Гц = Вт/с−1 = Дж.

Часто термин применяется при описании спектральной мощности потоков электромагнитного излучения или других колебаний в сплошной среде, например, акустических. В этом случае подразумевается мощность на единицу частоты на единицу площади, например: Вт/Гц/м2.

Формальное определение[править | править вики-текст]

Пусть  — сигнал, рассматриваемый на промежутке времени . Тогда энергия сигнала на данном интервале равна:

Тогда

=
=
=
,

где  — спектральная функция сигнала. Звёздочкой обозначена комплексно-сопряжённая функция. При , средняя мощность:

.

 — спектральная плотность мощности (функция плотности спектра мощности).

Спектр плотности мощности сигнала сохраняет информацию только об амплитудах спектральных составляющих. Информация о фазе теряется. Поэтому все сигналы с одинаковым спектром амплитуд и различными спектрами фаз имеют одинаковые спектры плотности мощности.

Методы оценки[править | править вики-текст]

Оценка СПМ может выполняться методом преобразования Фурье, предполагающего получение спектра в области частот посредством быстрого преобразования Фурье (БПФ). До изобретения алгоритмов БПФ этот метод из-за трудоёмкости прямого вычисления дискретного преобразования Фурье (ДПФ) практически не использовался. Предпочтение отдавалось другим методам, в частности, методу корреляционной функции (Блэкмена — Тьюки) и периодограммному методу.

См. также[править | править вики-текст]

Литература[править | править вики-текст]

  • Гольденберг Л. М., Матюшкин Б. Д., Поляк М. Н. Цифровая обработка сигналов: Справочник. — М.: Радио и связь, 1985.
  • Отнес Р., Эноксон Л. Прикладной анализ временных рядов. Основные методы. — М.: Мир, 1982.
  • Прокис Дж. Цифровая связь = Digital Communications / Кловский Д. Д.. — М.: Радио и связь, 2000. — С. 62-63. — 800 с. — ISBN 5-256-01434-X.