Тестирование псевдослучайных последовательностей

Материал из Википедии — свободной энциклопедии
(перенаправлено с «Статистические тесты генераторов случайных и псевдослучайных чисел»)
Перейти к навигации Перейти к поиску

Тестирование псевдослучайных последовательностей — совокупность методов определения меры близости заданной псевдослучайной последовательности к случайной. В качестве такой меры обычно выступает наличие равномерного распределения, большого периода, равной частоты появления одинаковых подстрок и т. п.

Теоретическая основа[править | править код]

Принципы построения[править | править код]

Один из самых наглядных тестов — тест на равномерное распределение частот появления каждого символа. Пусть  — последовательность длиной n и размерности m. Тогда частоты νi должны принадлежать отрезку . Однако, большинство тестов используют другой метод — принятие или отклонение гипотезы о случайности последовательности, используя статистические распределения.

Зная вероятностные свойства истинно случайной последовательности, можно на их основе проверять гипотезу о том, насколько сгенерированная последовательность похожа на случайную. Для этого для каждого теста подбирается подходящая статистика, вычисляется её значения для идеальной и сгенерированной последовательности. Если разность этих значений превышает некоторое критическое значение, установленное заранее, то последовательность считается неслучайной. Для «хороших» последовательностей вероятность такого события крайне мала (допустим ~0,001 и обозначим её α). Однако, существует вероятность того, что «плохая» последовательность удовлетворит критерию и будет сделан вывод о её случайности (обозначим вероятность такого события β). На практике значения длины последовательности n, α и β связаны, задаётся α и подбирается n такое, чтобы минимизировать β.

Определим величину P-value как вероятность того, что идеальный генератор сгенерировал последовательность менее случайную, чем исследуемый. Тогда если P-value больше α, то исследуемая последовательность считается случайной и наоборот в противном случае.

Кратко шаги статистического тестирования можно изобразить в виде таблицы:

№ шага Процесс Комментарии
1 Постановка гипотезы Предполагаем, что последовательность является случайной
2 Вычисление статистики исследуемой последовательности Тестирование на битовом уровне
3 Вычисление P-value P-value[0; 1]
4 Сравнение P-value с α Задаем α в пределах [0,001; 0,01]; если P-value>α, то тест пройден

Интерпретация результатов[править | править код]

Пусть дана двоичная последовательность s. Требуется установить, проходит ли данная последовательность статистический тест или нет. Для этого используются несколько различных подходов:

  • пороговое значение
  • фиксированный диапазон значений
  • значение вероятности

Пороговое значение[править | править код]

Данный подход заключается в подсчёте какой-либо статистической величины двоичной последовательности с(s) и его сравнении с некоторым пороговым значением. Если полученное значение с(s) меньше порогового значения, то последовательность s не проходит данный тест.

Фиксированный диапазон значений[править | править код]

Подход также заключается в подсчёте некоторой статистической величины двоичной последовательности с(s) как и в первом случае. Однако теперь мы говорим, что если с(s) выходит за пределы некоторого диапазона значений, то последовательность s не проходит данный тест.

Значение вероятности[править | править код]

Третий подход в определении того факта, что двоичная последовательность s проходит статистический тест, включает подсчёт не только статистической величины с(s), но и соответствующее ей значение вероятности p. Обычно подсчёт конкретной статистической величины производится таким образом, чтобы её большие значения предполагали неслучайный характер последовательности s. Тогда p есть вероятность получения значения с(s) большего либо равного значению с(s'), высчитанного для истинно случайной последовательности s'. Следовательно, малые значения вероятности p (обычно p < 0,05 или p < 0,01) могут быть интерпретированы как доказательство того, что s не является случайной. Таким образом, если для некоторого фиксированного значения a значение вероятности p < a, то двоичная последовательность s не проходит данный тест. Как правило, a принимает значения из интервала [0,001;0,01].

Графические тесты[править | править код]

К этой категории относятся тесты, результаты которых отображаются в виде графиков, характеризующих свойства исследуемой последовательности. Среди них:

  • гистограмма распределения элементов последовательности;
    позволяет оценить равномерность распределения символов в последовательности и определить частоту повторения каждого символа;
  • распределение на плоскости;
    предназначено для определения зависимости между элементами последовательности;
  • проверка серий;
    позволяет определить равномерность отдельных символов в последовательности, а также равномерность распределения серий из k бит;
  • проверка на монотонность;
    служит для определения равномерности исходя из анализа невозрастающих и неубывающих подпоследовательностей;
  • автокорреляционная функция;
    предназначена для оценки корреляции между сдвинутыми копиями последовательностей и отдельных подпоследовательностей;
  • профиль линейной сложности;
    тест оценивает зависимость линейной сложности последовательности от её длины;
  • графический спектральный тест;
    позволяет оценить равномерность распределения бит последовательности на основании анализа высоты выбросов преобразования Фурье.

Результаты графических тестов интерпретируются человеком, поэтому на их основе выводы могут быть неоднозначными.

Статистические тесты[править | править код]

В отличие от графических тестов, статистические тесты выдают численную характеристику последовательности и позволяют однозначно сказать, пройден ли тест. Наиболее известны следующие программные пакеты статистических тестов:

Название Автор Организация
1 Тесты NIST[1] Andrew Rukhin, et. al. NIST ITL
2 TEST-U01[2] P.L’Ecuyer и др. Universit´e de Montr´eal
3 CRYPT-X[3] Helen Gustafson и др. Queensland University of Technology
4 The pLab Project[4] Peter Hellekalek University of Salzburg
5 DIEHARD[5] George Marsaglia Florida State University
6 Dieharder[6] Robert G. Brown Duke University
7 ENT[7] John Walker Autodesk, Inc.
8 The Art Of Computer Programming Vol. 2 Seminumerical Algorithms[8] Дональд Кнут Stanford University
9 Handbook of Applied Cryptography[9] Alfred Menezes и др. CRC Press, Inc.

Тесты DIEHARD[править | править код]

Тесты DIEHARD были разработаны Джорджем Марсальей[en] в течение нескольких лет и впервые опубликованы на CD-ROM, посвящённом случайным числам. Они рассматриваются как один из наиболее строгих известных наборов тестов.

Тесты Д. Кнута[править | править код]

Тесты Кнута основаны на статистическом критерии . Вычисляемое значение статистики сравнивается с табличными результатами, и в зависимости от вероятности появления такой статистики делается вывод о её качестве. Среди достоинств этих тестов — небольшое их количество и существование быстрых алгоритмов выполнения. Недостаток — неопределенность в трактовке результатов. Вот краткое описание этих тестов:

  • Проверка несцепленных серий. Последовательность разбивается на m непересекающихся серий и строится распределение для частот появления каждой возможной серии.
  • Проверка интервалов. Данный тест проверяет равномерность распределения символов в исследуемой последовательности, анализируя длины подпоследовательностей, все элементы которых принадлежат определённому числовому интервалу.
  • Проверка комбинаций. Последовательность разбивается на подпоследовательности определённой длины, и исследуются серии, состоящие из различных комбинаций чисел.
  • Тест собирателя купонов. Пусть  — последовательность длины n и размерности m. Исследуются подпоследовательности определённой длины, содержащие каждое m-разрядное число.
  • Проверка перестановок. Данный тест проверяет равномерность распределения символов в исследуемой последовательности, анализируя взаимное расположение чисел в подпоследовательностях.
  • Проверка на монотонность. Служит для определения равномерности исходя из анализа невозрастающих и неубывающих подпоследовательностей.
  • Проверка корреляции. Данный тест проверяет взаимонезависимость элементов последовательности.

Тесты NIST[править | править код]

Отличие этих тестов от других современных — открытость алгоритмов. Также среди достоинств — однозначная интерпретация результатов тестирования. Таблица общих характеристик:

Название теста Определяемый дефект
1 Частотный тест Слишком много нулей или единиц
2 Проверка кумулятивных сумм Слишком много нулей или единиц в начале последовательности
3 Проверка «дырок» в подпоследовательностях Отклонение в распределении последовательностей единиц
4 Проверка «дырок» Большое (малое) число подпоследовательностей нулей и единиц свидетельствует, что колебание потока бит слишком быстрое (медленное)
5 Проверка рангов матриц Отклонение распределения рангов матриц от соответствующего распределения для истинно случайной последовательности, связанное с периодичностью последовательностей
6 Спектральный тест Периодические свойства последовательности
7 Проверка непересекающихся шаблонов Непериодические шаблоны встречаются слишком часто
8 Проверка пересекающихся шаблонов Слишком часто встречаются m-битные последовательности единиц
9 Универсальный статистический тест Маурера Сжимаемость (регулярность) последовательности
10 Проверка случайных отклонений Отклонение от распределения числа появлений подпоследовательностей определённого вида
11 Разновидность проверки случайных отклонений Отклонение от распределения числа появлений подпоследовательностей определённого вида
12 Проверка аппроксимированной энтропии Неравномерность распределения m-битных слов. Малые значения означают высокую повторяемость
13 Проверка серий Неравномерность распределения m-битных слов
14 Сжатие при помощи алгоритма Лемпела-Зива Большая сжимаемость, чем истинно случайная последовательность
15 Линейная сложность Отклонение от распределения линейной сложности для конечной длины подстроки

Практические приложения[править | править код]

Генераторы случайных и псевдослучайных чисел являются связующим звеном в обеспечении информационной безопасности. В некотором смысле это жизненно важные строительные блоки криптографических алгоритмов и протоколов. Поскольку такие генераторы применяются во многих криптографических задачах, например формирование случайных параметров и ключей систем шифрования, то требования, предъявляемые к ним, оказываются достаточно высокими. В частности, одним из критериев абсолютно произвольной двоичной последовательности, получаемой на выходе генератора, является невозможность её предсказания в отсутствие какой-либо информации о данных, подаваемых на вход генератора. Поэтому на практике статистические тесты проводят для проверки случайного характера бинарной последовательности, формируемой генератором случайных или псевдослучайных чисел. Что в свою очередь позволяет выявить генераторы, заранее удовлетворяющие требованиям конкретной криптографической задачи.

Конкурс AES[править | править код]

С целью утверждения нового стандарта шифрования Advanced Encryption Standard Национальный институт стандартов и технологий при поддержке правительства США провёл конкурс, в ходе которого были протестированы 15 претендовавших алгоритмов. Один из критериев, используемых при оценке алгоритмов, заключался в их пригодности в качестве генераторов случайных чисел. Проверка таких генераторов на предмет формирования случайных двоичных последовательностей с хорошими статистическими свойствами осуществлялась с помощью набора статистических тестов NIST.

В течение первого раунда AES тестирование проводилось с 128-битными ключами. Лишь 9 алгоритмов из 15 алгоритмов смогли пройти статистические тесты[10].

По результатам первого раунда 5 алгоритмов шифрования были выбраны в качестве финалистов AES: MARS, RC6, Rijndael, Serpent и Twofish. Во втором раунде конкурса AES оценка пригодности этих 5 алгоритмов в качестве генераторов случайных чисел проводилась на основе 192-битных и 256-битных ключей. Продолжительность статистических тестов NIST составила несколько месяцев, причем вычисления производились на многочисленных рабочих станциях Sun Ultra. Все данные формировались и обрабатывались в режиме онлайн. В результате второго раунда было показано, что каждый из пяти финалистов формирует случайную бинарную последовательность с хорошими статистическими свойствами и поэтому может быть использован в качестве генератора псевдослучайных чисел, причем имеется возможность использования ключей размерами: 128, 192 и 256 бит[11].

См. также[править | править код]

Примечания[править | править код]

  1. NIST Cryptographic Toolkit. Дата обращения: 8 мая 2010. Архивировано 17 августа 2011 года.
  2. TestU01. Дата обращения: 8 мая 2010. Архивировано 23 июля 2010 года.
  3. Crypt-X Архивная копия от 22 сентября 2008 на Wayback Machine. The Information Security Research Centre.
  4. The pLab Project. Дата обращения: 21 ноября 2009. Архивировано из оригинала 14 ноября 2009 года.
  5. The DIEHARD Test Suite Архивировано 25 января 2016 года.
  6. Dieharder: A Random Number Test Suite. Дата обращения: 8 мая 2010. Архивировано 10 июня 2010 года.
  7. ENT. Дата обращения: 8 мая 2010. Архивировано 15 мая 2010 года.
  8. Donald E. Knuth. The Art of Computer Programming, Vol.2: Semi-Numerical Algorithms Архивная копия от 4 сентября 2008 на Wayback Machine / 3rd ed. Addison-Wesley, 1998
  9. Alfred Menezes и др. Handbook of Applied Cryptography Архивная копия от 7 марта 2005 на Wayback Machine
  10. NIST IR 6390 Randomness Testing of the Advanced Encryption Standard Candidate Algorithms Архивная копия от 6 ноября 2010 на Wayback Machine (англ.)
  11. NIST IR 6483 Randomness Testing of the Advanced Encryption Standard Finalist Candidates Архивная копия от 27 мая 2010 на Wayback Machine (англ.)

Литература[править | править код]

  • Дональд Э. Кнут. Глава 3. Случайные числа // Искусство программирования = The Art of Computer Programming. — 3-е изд.. — М.: Вильямс, 2000. — Т. 2. Получисленные алгоритмы. — 832 с. — ISBN 5-8459-0081-6.
  • М. А. Иванов, И. В. Чугунков. Глава 4. Методика оценки качества генераторов ПСП // Теория, применение и оценка качества генераторов псевдослучайных последовательностей. — М.: КУДИЦ-ОБРАЗ, 2003. — 240 с. — ISBN 5-93378-056-1.

Ссылки[править | править код]