Сфера Римана

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Сфе́ра Ри́мана — риманова поверхность, естественная структура на расширенной комплексной плоскости Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «/mathoid/local/v1/»:): {\widehat {\mathbb {C} }}=\mathbb {C} \cup \{\infty \} , являющаяся комплексной проективной прямой Невозможно разобрать выражение (Ошибка преобразования. Сервер («https://ru.wikipedia.org/api/rest_») сообщил: «Cannot get mml. Server problem.»): \mathbb {C} \mathbb {P} ^{1} . Как вещественное дифференцируемое многообразие диффеоморфна двумерной сфере Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «/mathoid/local/v1/»:): S^{2} .

Координаты[править | править вики-текст]

Численные координаты на сфере Римана вводятся тремя способами:

  • аффинная комплексная координата z, способная принимать значение Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «/mathoid/local/v1/»:): \infty ;
  • проективные комплексные координаты Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «/mathoid/local/v1/»:): [z_{0}:z_{1}] ;
  • трёхмерные вещественные координаты Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «/mathoid/local/v1/»:): \xi ,\eta ,\zeta , связанные уравнением:
Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «/mathoid/local/v1/»:): \xi ^{2}+\eta ^{2}+(\zeta -{\frac {1}{2}})^{2}={\frac {1}{4}} .
Сфера Римана стереографической проекцией переводится на плоскость

Переход от одних координат к другим задаётся формулами:

Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «/mathoid/local/v1/»:): z={\frac {z_{1}}{z_{0}}}
Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «/mathoid/local/v1/»:): {\displaystyle \left\{ \begin{matrix} \xi + i\eta = \frac{z}{1+|z|^2} \\ \zeta = \frac{|z|^2}{1+|z|^2} \end{matrix}\right.}

Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «/mathoid/local/v1/»:): (\xi ,\eta ,\zeta )\mapsto z задаёт отображение сферы с выколотым полюсом на комплексную плоскость, которое называется стереографической проекцией.

Преобразования Мёбиуса[править | править вики-текст]

Автоморфизмами сферы Римана являются преобразования Мёбиуса. Пусть Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «/mathoid/local/v1/»:): a,b,c,d  — матрица из . Её действие на сфере Римана в терминах проективных комплексных координат — просто умножение вектора-столбца координат на матрицу. В аффинных координатах действие выглядит так:

Невозможно разобрать выражение (Ошибка преобразования. Сервер («https://ru.wikipedia.org/api/rest_») сообщил: «Cannot get mml. Server problem.»): z'={\frac {az+c}{bz+d}}

Приложения[править | править вики-текст]

Помимо математики, сфера Римана известна в теоретической физике.

В специальной теории относительности сфера Римана является моделью небесной сферы. Преобразования Мёбиуса связаны с преобразованиями Лоренца, и описывают искажение небесной сферы для наблюдателя, движущегося с околосветовой скоростью.

Преобразования Мёбиуса и Лоренца связаны также со спинорами. В квантовой механике сфера Римана параметризует состояния систем, описываемых 2-мерным пространством (см. q-бит), в особенности спина массивных частиц со спином 1/2, таких как электрон. В этом контексте сферу Римана называют сферой Блоха (en:Bloch sphere) и используют на ней координаты «широта-долгота» почти как на обычной сфере, только широту Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «/mathoid/local/v1/»:): \theta отсчитывают от полюса и делят угол на 2, т. ч. Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «/mathoid/local/v1/»:): 0<\theta <\pi /2 (см. рис.)

Blochsphere.svg

В таком случае верны соотношения:

Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «/mathoid/local/v1/»:): z_{0}:z_{1}=\cos \theta :e^{i\varphi }\sin \theta
Невозможно разобрать выражение (MathML с переходом в SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «/mathoid/local/v1/»:): \left\{{\begin{matrix}\xi +i\eta =e^{i\varphi }\sin {2\theta }\\\zeta -1=\cos {2\theta }\end{matrix}}\right.

В поляризационной оптике сферу Римана называют сферой Пуанкаре, а оси координат — параметрами Стокса.

Внутренность сферы[править | править вики-текст]

Внутренность сферы (шар) допускает смысловое толкование в обоих указанных выше приложениях. Как небесная сфера является множеством светоподобных направлений пространства-времени, так и её внутренность соответствует направлениям времениподобным, то есть фактически релятивистским досветовым скоростям. Это пространство является гиперболическим (имеет постоянную отрицательную кривизну наподобие плоскости Лобачевского, только при размерности 3 а не 2); на него естественным образом распространяется действие преобразований Мёбиуса.

Внутренность сферы Блоха отвечает так называемым смешанным состояниям q-бита, и геометрически устроена как обычный шар.

Однако, и то и другое описывается положительно определёнными эрмитовыми матрицами размера 2×2, рассматриваемыми с точностью до умножения на положительное число.

Ссылки[править | править вики-текст]