Тензорный анализ

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Тензорный анализ — обобщение векторного анализа, раздел тензорного исчисления, изучающий дифференциальные операторы, действующие на алгебре тензорных полей дифференцируемого многообразия . Рассматриваются также операторы, действующие на более общие, чем тензорные поля, геометрические объекты: тензорные плотности, дифференциальные формы со значениями в векторном расслоении.

Наибольший интерес представляют операторы, действие которых не выводит за пределы алгебры , среди таковых — ковариантная производная[⇨], производная Ли[⇨], внешняя производная[⇨], тензор кривизны невырожденного дважды ковариантного тензора[⇨].

Ковариантная производная[править | править вики-текст]

Ковариантная производная вдоль векторного поля  — линейное отображение пространства векторных полей многообразия , зависящее от векторного поля и удовлетворяющее условиям:

где , , , ,  — гладкие функции на . Определяемые этим оператором связность и параллельное перенесение позволяют распространить действие ковариантной производной до линейного отображения алгебры в себя; при этом отображение есть дифференцирование, сохраняет тип тензорного поля и перестановочно со свёрткой.

В локальных координатах ковариантная производная тензора с компонентами относительно вектора определяется как:

 — объект связности .

Производная Ли[править | править вики-текст]

Производная Ли вдоль векторного поля  — отображение пространства , определяемое формулой , где  — коммутатор векторных полей , . Этот оператор также однозначно продолжается до дифференцирования , сохраняет тип тензоров и перестановочен со свёрткой. В локальных координатах производная Ли тензора выражается так:

Внешняя производная[править | править вики-текст]

Внешний дифференциал (внешняя производная) — линейный оператор , сопоставляющий внешней дифференциальной форме (кососимметричному ковариантному тензору) степени форму такого же вида и степени , удовлетворяющий условиям:

где  — символ внешнего произведения,  — степень . В локальных координатах внешняя производная тензора выражается так:

Оператор  — обобщение оператора .

Тензор кривизны[править | править вики-текст]

Тензор кривизны симметричного невырожденного дважды ковариантного тензора представляет собой действие некоторого нелинейного оператора :

,

где

.

Литература[править | править вики-текст]

  • Сокольников И. С. Тензорный анализ. — М.: Наука, 1971. — 374 с.
  • Схоутен Я. А. Тензорный анализ для физиков. — М.: Главная редакция физико-математической литературы изд-ва "Наука", 1965. — 456 с.
  • Широков П. А. Тензорное исчисление. — М.–Л.: Гостехиздат, 1934. — 464 с.