Парадоксы электрона

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску

Парадоксы электрона — парадоксы классической электродинамики, вытекающие из предположения о точечном характере электрона. Если предположить наличие конечных размеров у электрона, то электрон должен быть либо абсолютно твёрдым, либо сжимаемым телом. Существование абсолютно твердых тел невозможно вследствие требования релятивистской инвариатности теории относительности[1]. Если предположить, что электрон сжимаем, то должны существовать возбуждённые состояния электрона, а на опыте они не обнаружены[1].

Согласно экспериментам по сверхточному определению магнитного момента электрона (Нобелевская премия 1989 года), размеры электрона не превышают 10−20 см)[2][3].

Существует и точка зрения, согласно которой размеры электрона приблизительно равны его комптоновской длине волны, а попытки исследовать его внутреннюю структуру бессмысленны, так как для этого нужно использовать внешнее поле с длинами волн, меньшей чем комптоновская длина волны электрона. В таком поле могут возникать новые электроны (в парах электрон-позитрон). Вследствие принципа тождественности частиц новые электроны невозможно отличить от исследуемого[4][5].

Электростатическая энергия электрона[править | править код]

Рассматривая электрон как равномерно заряженный шар радиуса с зарядом , найдём, что энергия его электростатического поля равна [1]. У точечного электрона радиуса и энергия электростатического поля бесконечно велика, а, следовательно, бесконечно велика связанная с этой энергией масса.

Объяснение парадокса[править | править код]

Объяснение этого парадокса заключается в том, что классическая электродинамика не применима на достаточно малых расстояниях вследствие того, что при таких условиях она становится внутренне противоречивой теорией. Эти расстояния можно найти из условия примерного равенства энергии электростатического поля энергии покоя электрона . Получаем (классический радиус электрона). В действительности классическая электродинамика неприменима к рассмотрению электрона вследствие квантовых эффектов с расстояний (комптоновская длина волны электрона)[6].

В квантовой электродинамике этот парадокс разрешается путём применения метода перенормировки массы.

Взаимодействие электрона с собственным излучением[править | править код]

Описание взаимодействия электрона с собственным электромагнитным полем в процессе торможения собственным излучением содержит внутренние противоречия. Уравнение движения электрона в отсутствие внешней силы имеет вид [7]. Это уравнение кроме тривиального решения имеет решение, в котором ускорение пропорционально и неограниченно возрастает со временем в противоречии с законом сохранения энергии.

Объяснение парадокса[править | править код]

Истоки этого парадокса заключаются в бесконечной электромагнитной массе электрона. Конечная масса электрона в уравнениях электродинамики означает, что к массе электрона для компенсации бесконечной электромагнитной массы добавлена бесконечная отрицательная масса другого происхождения. Вычитание бесконечностей является не вполне корректной математической операцией и приводит, в том числе, и к данному парадоксу[8].

Нуль-заряд электрона[править | править код]

Электрон окружен облаком виртуальных электронно-позитронных пар, экранирующих его заряд (эффект электромагнитной поляризации вакуума). В результате этой экранировки его заряд , наблюдаемый внешним наблюдателем, уменьшается по сравнению с зарядом "голого" электрона. В результате вычислений с использованием метода перенормировки получаем формулу для связи этих двух величин[9]: . Здесь: - наибольший импульс элементарных частиц, при котором справедливы законы квантовой электродинамики, - масса электрона. Если предположить, что законы квантовой электродинамики выполняются для точечного электрона, то есть при , то . Таким образом, при получаем , то есть обращение в нуль реально наблюдаемого заряда электрона[10].

На данный парадокс (любой конечный затравочный заряд экранируется до нуля) одними из первых обратили внимание учёные из Москвы, поэтому он иногда называется "московским нулем"[11][12][13].

Объяснение парадокса[править | править код]

Существуют четыре различных объяснения этого парадокса.

Одно объяснение считает этот результат следствием неприменимости законов квантовой электродинамики в области больших импульсов и малых расстояний[10].

Другое объяснение считает этот результат лишь следствием незаконного обращения с бессмысленными выражениями типа полученной формулы для наблюдаемого заряда электрона[14]

Третье объяснение было дано с построением теории неабелевых калибровочных полей Янга-Миллса и объединением на его основе слабых и электромагнитных взаимодействий.[15].

Также существует гипотеза, что экранировка электрического заряда на малых расстояниях, за счёт виртуальных пар ещё неизвестных элементарных частиц с большими массами, сменяется антиэкранировкой, подобной той, какую осуществляют глюоны в квантовой хромодинамике[16].

Взаимодействие электрона с нулевыми колебаниями электромагнитного поля[править | править код]

Основной источник: [17]

Средние квадраты смещений и скорости точечого электрона при его взаимодействии с нулевыми колебаниями электромагнитного поля оказываются бесконечно большими: , . Здесь - заряд электрона, - постоянная Планка, - масса электрона, - скорость света, частота зависит от энергии связи электрона. Поэтому энергия взаимодействия точечного электрона с нулевыми колебаниями электромагнитного поля оказывается бесконечно большой: .

Объяснение парадокса[править | править код]

Взаимодействие нулевых колебаний электромагнитного поля с виртуальными электронно-позитронными парами вакуума, особенно заметное для частот, превышающих , приводит к существенной экранировке электромагнитного поля нулевых колебаний вакуума. Математически это выражается в конечности среднего квадрата смещений электрона и логарифмической расходимости выражения для энергии флуктуаций электрона: , где - множитель порядка единицы. . Энергия взаимодействия точечного электрона с флуктуациями электромагнитного поля: , где - частота обрезания. Для того, чтобы эта энергия осталась меньше полной энергии , связанной с массой электрона, достаточно принять размер электрона см.

Примечания[править | править код]

  1. 1 2 3 Пайерлс, 1958, с. 264.
  2. Демельт Х. «Эксперименты с покоящейся изолированной субатомной частицей» // УФН, т. 160 (12), с. 129—139, 1990
  3. Nobel lecture, December, 8, 1989, Hans D. Dehmelt Experiments with an isolated subatomic particle at rest
  4. Э. Хенли, В. Тирринг Элементарная квантовая теория поля // М. ИЛ. — 1963. — C. 67
  5. Наумов А. И. Физика атомного ядра и элементарных частиц. - М., Просвещение, 1984. - С. 318-319
  6. Ландау, 1969, с. 203.
  7. Ландау, 1969, с. 262.
  8. Ландау, 1969, с. 263.
  9. Ахиезер, 1969, с. 343.
  10. 1 2 Ахиезер, 1969, с. 346.
  11. Ландау Л. Д., Померанчук И. Я. О точечном взаимодействии в квантовой электродинамике // Доклады АН СССР. — 1955. — Т. 102. — С. 489.
  12. Померанчук И. Я. Равенство нулю перенормированного заряда в квантовой электродинамике // Доклады АН СССР. — 1955. — Т. 103. — С. 1005.
  13. Наумов А. И. Физика атомного ядра и элементарных частиц. — М., Просвещение, 1984. — Тираж 30 000 экз. — c. 358
  14. Боголюбов, 1984, с. 261.
  15. Берестецкий В. Б. Нуль-заряд и асимптотическая свобода // УФН. — 1976. — Т. 120. — С. 439-454
  16. Морозов А. Ю. Струны в теоретической физике // Эйнштейновский сборник 1986-1990. — М., Наука, 1990. — Тираж 2600 экз. — с. 380
  17. Вайскопф В. Физика в двадцатом столетии. — М., Атомиздат, 1977. — c. 84-104

Литература[править | править код]