Теорема Банаха о неподвижной точке

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Теорема Банаха о неподвижной точке — утверждение в метрической геометрии, гарантирующее наличие и единственность неподвижной точки у определённого класса отображений метрических пространств, также содержит конструктивный метод нахождения этой точки. Теорема названа в честь Стефана Банаха, польского математика, установившего это утверждение в 1922 году.

Теорема[править | править вики-текст]

Пусть  — непустое полное метрическое пространство. Пусть  — сжимающее отображение на , то есть существует число такое, что

для всех из . Тогда у отображения существует, и притом ровно одна, неподвижная точка из (неподвижная означает ).

Число часто называют коэффициентом сжатия.

Если число равно 1, то есть отображение не сжимающее, теорема может не выполняться.

Доказательство[править | править вики-текст]

Возьмём произвольный фиксированный элемент метрического пространства и рассмотрим последовательность .

Таким образом получим последовательность .

Покажем, что эта последовательность фундаментальная. В самом деле:

.

По неравенству треугольника для

Так как по условию , то . Отсюда следует, что при и любом .

Значит, последовательность сходится в себе (фундаментальная).

В силу полноты пространства существует элемент , являющийся пределом этой последовательности .

Докажем, что .

По неравенству треугольника, . Так как , то для любого при достаточно большом и . Так как произвольно, то отсюда следует, что , то есть , что и требовалось доказать.

Докажем единственность неподвижной точки у оператора сжатия. Предположим, что существуют два различных элемента , такие, что . Тогда . Если допустить, что , то из предыдущего следует, что . Но это противоречит условию . Таким образом, наше допущение что неверно и .

Применение[править | править вики-текст]

Теорема Банаха используется в теории дифференциальных уравнений для доказательства существования и единственности решения некоторых классов краевых задач. В теории интегральных уравнений теорема используется для доказательства существования и единственности решения неоднородного линейного интегрального уравнения Фредгольма 2-го рода, интегрального уравнения Вольтерры 2-го рода, некоторых видов нелинейных интегральных уравнений. Широкое применение теорема находит в численных методах, таких как метод Якоби, метод Гаусса — Зейделя, метод Ньютона также можно рассматривать с позиции теоремы Банаха. Также теорема нашла применение в теории фракталов.

Литература[править | править вики-текст]

  • Краснов М. Л. Интегральные уравнения, М., Наука, 1975