Теорема Брахмагупты

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску

Теоре́ма Брахмагу́пты — теорема элементарной геометрии, найденная в седьмом столетии нашей эры индийским математиком Брахмагуптой.

Если вписанный четырёхугольник имеет перпендикулярные диагонали, пересекающиеся в точке , то прямая, проходящая через точку и перпендикулярная одной из его сторон, делит противоположную ей сторону пополам.

Замечание. По аналогии с серединным перпендикуляром (медиатрисой) к стороне треугольника отрезок FE на рисунке справа называют антимедиатрисой противоположных сторон четырёхугольника. С учетом этого замечания теорема Брахмагупты может быть сформулирована в виде:

Если вписанный четырёхугольник имеет перпендикулярные диагонали, пересекающиеся в точке M, то две пары его антимедиатрис проходят через точку M.

Доказательство[править | править код]

На рисунке изображён вписанный четырёхугольник , имеющий перпендикулярные диагонали и , а прямая перпендикулярна стороне и пересекает сторону в точке . Тогда Следовательно, треугольник  — равнобедренный. Аналогично, равнобедренным будет и треугольник . Поэтому .

Антицентр и коллинеарность[править | править код]

Четыре отрезка прямых, перпендикулярных одной стороне вписанного ортодиагонального четырёхугольника и проходящих через середину противоположной стороны, пересекаются в одной точке[1][2]. Эта точка пересечения называется антицентром. Антицентр симметричен центру описанной окружности относительно «вершинного центроида». Таким образом, во вписанном четырёхугольнике центр описанной окружности, «вершинный центроид» и антицентр лежат на одной прямой[2].

Примечания[править | править код]

  1. Altshiller-Court, 2007, с. 131.
  2. 1 2 Honsberger, 1995, с. 35–39, 4.2 Cyclic quadrilaterals.

Литература[править | править код]