Теорема Кантора

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

В теории множеств теорема Кантора гласит, что

Любое множество менее мощно, чем множество всех его подмножеств.


Доказательство[править | править вики-текст]

Предположим, что существует множество , равномощное множеству всех своих подмножеств , то есть, что существует такая биекция , ставящая в соответствие каждому элементу множества некоторое подмножество множества .

Рассмотрим множество , состоящее из всех элементов , не принадлежащих своим образам при отображении (оно существует по аксиоме выделения): .

биективно, а , поэтому существует такой, что .

Теперь посмотрим, может ли принадлежать .

Если , то , а тогда, по определению , .

И наоборот, если , то , а следовательно, . В любом случае, получаем противоречие.

Следовательно, исходное предположение ложно и не равномощно .

Заметим, что содержит подмножество, равномощное (например, множество всех одноэлементных подмножеств ), а тогда из только что доказанного следует .

Ссылки[править | править вики-текст]