Теорема Морли

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Теорема Морли[1], или теорема Морлея[2] о трисектрисах — одна из интереснейших теорем геометрии треугольника. Трисектрисами угла называются два луча, делящие угол на три равные части.

Формулировка[править | править вики-текст]

Morley triangle.svg
Теорема

Точки пересечения смежных трисектрис углов произвольного треугольника являются вершинами правильного (равностороннего) треугольника.

На чертеже три разноцветных угла при каждой вершине большого треугольника равны. Независимо от выбора большого треугольника маленький фиолетовый треугольник будет равносторонним.

История[править | править вики-текст]

Теорема была открыта в 1904 году Фрэнком Морли в связи с изучением свойств кубических кривых. Тогда он упомянул об этой теореме своим друзьям, а опубликовал её двадцать лет спустя в Японии. За это время она была независимо опубликована как задача в журнале Educational Times[en].

Вариации и обобщения[править | править вики-текст]

  • На описанной окружности треугольника существуют ровно три точки, таких что их прямая Симсона касается окружности Эйлера треугольника , причем эти точки образуют правильный треугольник. Стороны этого треугольника параллельны сторонам треугольника Морлея.
  • Если рассмотреть также внешние трисектрисы (то есть трисектрисы внешних углов треугольника), то среди точек пересечения этих 12 прямых существует 27 троек точек, образующих правильные треугольники.

Замечание[править | править вики-текст]

Существуют точки Морлея −1-я и 2-я, связанные с треугольником Морлея (1ST AND 2ND Morley Centers)http://faculty.evansville.edu/ck6/tcenters/recent/morley.html (см. Недавно открытые точки (центры) треугольника)

См. также[править | править вики-текст]

Примечания[править | править вики-текст]