Теорема Паппа

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
Теорема Паппа

Теоре́ма Па́ппа — это классическая теорема проективной геометрии. Она формулируется следующим образом:

Пусть A, B, C — три точки на одной прямой, A' , B' , C'  — три точки на другой прямой. Пусть три прямые АВ' , BC' , CA' пересекают три прямые A’B, B’C, C’A, соответственно в точках X, Y, Z. Тогда точки X, Y, Z лежат на одной прямой.

Несложно видеть, что двойственная формулировка к теореме Паппа является лишь переформулировкой самой теоремы:

Пусть прямые проходят через точку A, проходят через точку A'. пересекает и в точках B и C, пересекает и в точках C' и Z, пересекает и в точках B' и X. Тогда прямые BC', B’C и XZ пересекаются в одной точке (на чертеже — точка Y) или параллельны.

Теорема Паппа является вырожденным случаем в теореме Паскаля: если заменить в теореме Паскаля вписанный в конику шестиугольник на вписанный в пару пересекающихся прямых, то она станет эквивалентной теореме Паппа. Сам Паскаль считал пару прямых коническим сечением (то есть считал теорему Паппа частным случаем своей теоремы).

История[править | править код]

Формулировка и доказательство этой теоремы содержатся в «Математическом собрании» Паппа Александрийского (начало IV века н. э.). В Новое время теорема была опубликована издателем и комментатором работ Паппа Федерико Коммандино в 1566 году.

Доказательства[править | править код]

Точки X, Y, Z лежат на одной прямой

Доказательство удалением точек на бесконечность[править | править код]

Пусть точка - точка пересечения прямых, на которых лежат точки , , и , , .

Рассмотрим пересечения прямых:

Теперь применим проективное отображение, переводящее прямую на бесконечность. Тогда .

Так как : . Теперь необходимо доказать, что .

Рассмотрим подобные треугольники.

Отсюда следует, что (по второму признаку подобия треугольников) .

Что и требовалось доказать.

Доказательство через теорему Менелая[править | править код]

Применяя к треугольникам , и теорему Менелая, также можно доказать данное утверждение.

См. также[править | править код]

Ссылки[править | править код]