Теория Томаса — Ферми

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску

Теория Томаса — Ферми (модель Томаса — Ферми) является квантовомеханической теорией электронной структуры системы многих тел, разработана с использованием квазиклассического приближения вскоре после открытия уравнения Шредингера Энрико Ферми и Люэлином Томасом[1][2]. Она основывается не на волновой функции, а формулируется в терминах электронной плотности и рассматривается как предшественник современной теории функционала плотности. Модель Томаса — Ферми правильна только в пределе бесконечного ядерного заряда. Используя это приближение для реальных систем теория дает плохие количественные предсказания и даже не в состоянии воспроизвести некоторые общие черты, такие как плотность оболочечной структуры атомов и осцилляции Фриделя в твердых телах. Она, однако, нашла приложения во многих областях благодаря возможности получать правильное качественное поведение аналитически и легкости с которой она может быть решена. Выражение кинетической энергии в теории Томаса-Ферми также используется в качестве компонента более сложного приближения для плотности кинетической энергии в современных теориях функционала плотности, где можно обойтись без орбиталей.

Кинетическая энергия[править | править код]

Для малого элемента объема ΔV, и для атома в основном состоянии, мы можем заполнить в сферическом пространстве импульсов объем Vf  до импульса Ферми pf , и, таким образом,[3]

где точка в ΔV.

Соответствующее фазовое пространство имеет объем

Электроны в ΔVph  распределены равномерно с двумя электронами в h3 этого объема фазового пространства, где h постоянная Планка.[4] Тогда число электронов в ΔVph  составит

Число электронов в ΔV :

где плотность электронов.

Приравнивая число электронов в ΔV и в ΔVph  даёт,

Доля электронов в чей импульс лежит между импульсами p и p+dp составит

Используя классическое выражение для кинетической энергии электрона с массой me, кинетической энергии в единице объема в для электронов атома

где использовалось предыдущее выражение, связывающее и и

Интегрирование кинетической энергии в единице объема во всем пространстве, приводит к полной кинетической энергии электронов,[5]

Этот результат показывает, что полная кинетическая энергия электронов может быть выражена в терминах только пространственно зависимой плотности электронов согласно модели Томаса-Ферми. Как таковые, они смогли рассчитать энергию атома с помощью этого выражения для кинетической энергии в сочетании с классическими выражениями для ядерно-электронных и электрон-электронных взаимодействий (которые могут быть представлена в виде электронной плотности).

Потенциальная энергия[править | править код]

Потенциальная энергия электронов атома, за счет электрического притяжения положительно заряженного ядра:

где есть потенциальная энергия электрона в точке находящегося в электрическом полем ядра. В случае когда ядро находится в точке и зарядом Ze, где Z представляет собой натуральное число e элементарный заряд,

Потенциальная энергия электронов за счет их взаимного электрического отталкивания равна

Полная энергия[править | править код]

Полная энергия электронов равна сумме их кинетической и потенциальной энергий,[6]

Примечания[править | править код]

  1. Thomas, L. H. The calculation of atomic fields (неопр.) // Proc. Cambridge Phil. Soc.. — 1927. — Т. 23, № 5. — С. 542—548. — doi:10.1017/S0305004100011683. — Bibcode1927PCPS...23..542T.
  2. Fermi, Enrico. Un Metodo Statistico per la Determinazione di alcune Prioprietà dell'Atomo (итал.) // Rend. Accad. Naz. Lincei : diario. — 1927. — V. 6. — P. 602—607.
  3. March 1992, p.24
  4. Parr and Yang 1989, p.47
  5. March 1983, p. 5, Eq. 11
  6. March 1983, p. 6, Eq. 15

Литература[править | править код]

  1. R. G. Parr and W. Yang. Density-Functional Theory of Atoms and Molecules (англ.). — New York: Oxford University Press, 1989. — ISBN 978-0-19-509276-9.
  2. N. H. March. Electron Density Theory of Atoms and Molecules (англ.). — Academic Press, 1992. — ISBN 978-0-12-470525-8.
  3. N. H. March. 1. Origins – The Thomas–Fermi Theory // Theory of The Inhomogeneous Electron Gas (неопр.) / S. Lundqvist and N. H. March. — Plenum Press, 1983. — ISBN 978-0-306-41207-3.