Теплоэнергетика

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску

Теплоэнергетика — отрасль теплотехники, занимающаяся преобразованием теплоты в другие виды энергии, главным образом в механическую и через неё в электрическую[1]. Основу современной энергетики составляют тепловые электростанции (ТЭС), использующие для этого химическую энергию органического топлива. Они делятся на:

Теплоэнергетика в мировом масштабе преобладает среди традиционных видов, на базе угля вырабатывается 46 % всей электроэнергии мира, на базе газа — 18 %, еще около 3% - за счет сжигания биомасс, нефть используется для 0,2%. Суммарно тепловые станции обеспечивают около 2/3 от общей выработки всех электростанций мира[2][3].

На 2013 год, средний КПД тепловых электростанций был равен 34 %, при этом наиболее эффективные угольные электростанции имели КПД в 46 %, а наиболее эффективные газовые электростанции — 61 %Ошибка в сносках?: Неправильный вызов: ключ не был указан.

В России на 2009 год 47% электричества было выработано за счет сжигания газа, 18% - угля. Гидроэнергетика и атомные станции выработали по 17 и 16 % соответственно.[4]

Энергетика таких стран мира, как Польша и ЮАР практически полностью основана на использовании угля, а Нидерландовгаза. Очень велика доля теплоэнергетики в Китае, Австралии, Мексике.

По прогнозу Европейской ассоциации по производству электроэнергии и тепла (VGB Power Tech. E.V.) производство энергии до 2030 года будет ежегодно расти на 1,3% для ЕС и 2.5% для остальных стран[5], потребность в электроэнергии в странах ЕС увеличится с 3,0 ТВт в 2002 г. до 4,4 ТВт в 2020 г.[6]


Автоматизация и автоматизированное управление в теплоэнергетике[править | править код]

Важнейшим признаком энергетической системы, отличающей ее от других крупных промышленных и производственных объединений, является одновременность процессов производства, распределения и потребления электрической энергии, обусловленная невозможностью складирования готовой продукции и недопустимостью небаланса между суммарными мощностями, генерируемыми электростанциями и потребляемыми в энергетической системе. Изменение количества генерируемой мощности неизбежно ведет к изменению ее потребления. Этот процесс, как правило, сопровождается изменением параметров режима работы энергетической системы: напряжений, токов, частоты сети и др.

Энергетическая система в целом относится к так называемым большим системам, поскольку она состоит из взаимодействующих друг с другом подсистем.[7]

Быстрое развитие автоматизации в теплоэнергетики выявило ряд проблем управления. Таковыми являются:

  1. Большая инерционность динамических характеристик тепловых и материальных процессов.
  2. Большая степень неопределенности характеристик объекта управления.
  3. Непостоянство во времени характеристик объекта управления, что требует дополнительного времени на подстройку системы управления во время работы.[8]


Примечания[править | править код]

  1. Теплоэнергетика // Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров. — 3-е изд. — М. : Советская энциклопедия, 1969—1978.
  2. Данные за 2011 год.
  3. World Energy Perspective Cost of Energy Technologies (англ.). ISBN: 978 0 94612 130 4 11. WORLD ENERGY COUNCIL, Bloomberg (2013). Дата обращения 29 июля 2015.
  4. Russia’s energy: electric power sector (недоступная ссылка). Дата обращения 29 июля 2015. Архивировано 16 апреля 2013 года.
  5. Салихов, 2010, с. 406.
  6. Салихов, 2010, с. 409.
  7. Плетнев Г.П. Автоматизированное управление объектами тепловых электростанций: Учеб. пособие. - М.: Энергоиздат, 1981 . - с. 14-15
  8. А.В. Андрюшин, В.Р.Сабанин, Н.И.Смирнов.Управление и инноватика в теплоэнергетике. — М: МЭИ, 2011. — С. 15. — 392 с. — ISBN 978-5-38300539-2.

Литература[править | править код]

  • Салихов А.А. Актуальные проблемы современной теплоэнергетики. — М.: КОНЦ ЕЭС, 2010. — 456 с. — ISBN 978-5-383-00409-8.