Тест Чоу

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Тест Чоу (англ. Chow test) — применяемая в эконометрике процедура проверки стабильности параметров регрессионной модели, наличия структурных сдвигов в выборке. Фактически тест проверяет неоднородность выборки в контексте регрессионной модели.

Истинные значения параметров модели могут теоретически различаться для разных выборок, так как выборки могут быть неоднородны. В частности, при анализе временных рядов может иметь место так называемый структурный сдвиг, когда со временем изменились фундаментальные характеристики изучаемой системы. Это означает, что модель до этого сдвига и модель после сдвига вообще говоря разные. Например, экономика в 1998—1999 году и в 2008—2009 годах претерпевала структурные изменения в связи с кризисными явлениями, поэтому параметры макроэкономических моделей могут быть разными, до и после этих моментов.

Тест Чоу на структурное изменение[править | править вики-текст]

Пусть дана выборка объёмом , которая разбита на две подвыборки , с объёмами соответственно: . Для временных рядов это означает обычно, что определён момент времени, подозреваемый на «структурный сдвиг», соответственно временные ряды разбиваются на ряды до этого момента и после.

Пусть рассматривается регрессионная модель , где  — параметры модели (их количество — ). Предполагается, что подвыборки могут быть неоднородными. Таким образом, для двух подвыборок имеются две модели:

Эти две модели можно представить одной моделью, если использовать индикатор подвыборки :

Используя эту переменную формулируется следующая модель:

«длинная модель» без ограничений для всей выборки с количеством параметров . Если в этой модели наложить ограничение , то получается исходная модель с параметрами также для всей выборки. Это — «короткая модель» — модель с линейными ограничениями на параметры длинной модели.

Тогда процедуру теста можно свести к проверке этого линейного ограничения. При нормально распределённых случайных ошибках применяется стандартный F-тест для проверки линейных ограничений. Статистика этого теста строится по известному принципу:

Соответственно, если значение этой статистики больше критического при данном уровне значимости, то гипотеза об ограничениях отвергается в пользу длинной модели, то есть выборки признаются неоднородными и необходимо строить две разные модели для выборок. В противном случае выборка однородна (параметры модели стабильны) и можно строить общую модель для выборки.

Кроме F-теста можно применять и другие тесты для проверки гипотезы об ограничениях, в частности LR-тест. Особенно это касается более общего случая, когда выделяются не две подвыборки, а несколько. Если количество подвыборок равно , то соответствующая LR-статистика будет иметь распределение .

Замечание[править | править вики-текст]

В тесте предполагается, что разными в выборках могут быть только параметры линейной модели, но не параметры распределения случайной ошибки. В частности, предполагается одинаковая дисперсия случайной ошибки в обоих подвыборках. В общем случае, однако, это может быть не так. В этом случае применяют тест Вальда со статистикой:

,

где  — оценки параметров и оценки их ковариационной матрицы в первой и второй подвыборках соответственно.

Тест Чоу на предсказание[править | править вики-текст]

Здесь применяется несколько иной подход. Строится модель для одной из подвыборок и на основе построенной модели прогнозируется зависимая переменная для второй подвыборки. Чем больше различия между предсказанными и фактическими значениями объясняемой переменной во второй выборке, тем больше разница между подвыборками. Соответстувующая F-статистика равна:

.

В данном случае также можно использовать LR-статистику с асимптотическим распределением .

См. также[править | править вики-текст]

Литература[править | править вики-текст]