Тождество Капелли

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Тождество Капелли — аналог матричного соотношения для дифференциальных операторов с некоммутирующими элементами, связанных с представлением алгебры Ли . Используется для соотнесения инварианта с инвариантом , где  — это -процесс Кэли[en]. Названо по имени Альфредо Капелли, установившего этот результат в 1887 году.

Формулировка[править | править вики-текст]

Пусть для  — коммутирующие переменные и  — поляризационный оператор:

.

Тождество Капелли утверждает, что следующие дифференциальные операторы, выраженные как определители, равны:

Обе стороны этого равенства — дифференциальные операторы. Определитель в левой части имеет некоммутирующие элементы, и при разложении сохраняет порядок своих множителей слева направо. Такой определитель часто называют определителем по столбцам[неизвестный термин], так как он может быть получен за счет разложения определителя по столбцам, начиная с первого столбца. Это может быть формально записано как

где в произведении первыми идут элементы из первого столбца, затем из второй и так далее. Определитель во втором множителе правой части равенства есть Омега процесс Кэли[en], а в первом — определитель Капелли.

Операторы Eij могут быть записаны в матричной форме:

где  — матрицы с элементами Eij, xij, соответственно. Если все элементы в этих матрицах коммутирующие, тогда очевидно . Тождество Капелли показывает, что, несмотря на некоммутируемость формуле выше можно придать смысл. Цена некоммутируемости — небольшая поправка: в левой части равенства. В общем случае для некоммутирующих матриц такие формулы, как

не существуют, и само понятие определитель не имеет смысла. Именно поэтому тождество Капелли все ещё несколько загадочно, несмотря на многочисленные его доказательства. По-видимому, очень короткого доказательства не существует. Проверка тождества на прямую может быть сделано в качестве относительно несложного упражнения для n = 2, но уже для n = 3 прямая проверка будет слишком длиной.

Связь теории представлений[править | править вики-текст]

При рассмотрении общей ситуации предположим, что и два целых числа и для , коммутирующие переменные. Переопределим почти так же, как раньше:

,

с той лишь разницей, что индекс суммирования пробегает значения от до . Легко видеть, что такие коммутаторы этих операторов удовлетворяют следующим соотношениям:

.

Здесь означает коммутатор . Это те же соотношения, которые выполняются для матриц , в которых стоят нули всюду, кроме позиции , где находится 1. (Такие матрицы иногда называется матричными единицами). Отсюда заключаем, что отображение определяет Представление алгебры Ли в векторном пространстве многочленов от .

Случай m = 1 и представление Sk Cn[править | править вики-текст]

При рассмотрении частного случая m = 1 имеем xi1, который будем сокращённо записывать как xi:

В частности, для многочленов первой степени видно, что:

.

Поэтому действие ограничивается пространством многочленов первой степени точно так же, как действие матричных единиц на векторах в . Таким образом, с точки зрения теории представления, подпространство многочленов первой степени это подпредставление алгебры Ли , которое мы отождествляем с стандартным представлением в . Далее видно, что дифференциальные операторы сохраняют степень многочленов, и следовательно многочлены каждой фиксированной степени образуют подпредставление алгебры Ли . Видно также, что пространство однородных многочленов степени k может быть определено симметричным тензором степени стандартного представления .

Также может быть определена структура максимального веса[en] этих представлений. Одночлен  — это вектор максимального веса[en]. Действительно, для i < j. Его максимальный вес равен (k, 0, … ,0), потому что .

Это представление иногда называют бозонным преставлением . Аналогичные формулы определяют так называемое фермионное представление, где —антикоммутативные переменные. Снова, многочлены степени k образуют неприводимое подпредставление, изоморфное , то есть антисимметричный тензор степени . Максимальный вес такого представления (0, …, 0, 1, 0, …, 0). Эти представления при k = 1, …, n являются фундаментальными представлениями .

Тождество Капелли для m = 1[править | править вики-текст]

Вернёмся к тождеству Капелли. Можно доказать следующее:

.

Основная мотивация для этого равенства следующая: рассмотрим для некоторых коммутирующий переменных . Матрица имеет ранг 1 и, следовательно, её определитель равен нулю. Элементы матрицы определены аналогичными формулами, однако, её элементы не коммутируют. Тождество Капелли показывает, что коммутативное тождество может быть сохранено при введении поправок к матрице .

Отметим также, что подобное тождество для характеристического многочлена:

где . Это некоммутативный аналог простого факта, что характеристический многочлен матрицы ранга 1 содержит только первые и вторые коэффициенты.

Рассмотрим пример для n = 2.

Используя

мы видим что это равно:

Универсальная обёртывающая алгебра и её центр[править | править вики-текст]

Интересным свойством определителя Капелли является то, что он коммутирует со всеми операторами Eij, то есть, коммутаторы равны нулю.

Это утверждение может быть обобщено следующим образом. Рассмотрим любые элементы Eij в любом кольце, удовлетворяющие соотношению на коммутатор , (например, они могут быть дифференциальными операторами, как указано выше, матричными единицами eij или любыми другими элементами). Определим элементы Ck следующим образом:

где

тогда:

  • элементы Ck коммутируют со всем элементами Eij
  • элементы Ck могут быть представлены формулами, аналогичным коммутативному случаю:

то есть они являются суммами главных миноров матрицы E, по модулю поправок Капелли . В частности, элемент C0 является определителем Капелли, рассмотренным выше.

Эти утверждения взаимосвязаны с тождеством Капелли, как будет показано ниже, и судя по всему, для них также не существует прямого короткого доказательства, несмотря на простоту формулировок.

Универсальная обёртывающая алгебра может быть определена как алгебра, генерируемая Eij связанными только соотношениями

.

Утверждение выше показывает, что элементы Ck принадлежат центру . Более того можно доказать, что они — свободные генераторы центра . Иногда они называются генераторами Капелли. Тождества Капелли для них будут рассмотрены ниже.

Рассмотрим пример при n = 2.

Непосредственно проверяется, что элемент коммутирует с . (Это соответствует очевидному факту, что матрица тождества коммутирует со всеми другими матрицами). Более поучительной является проверка коммутативности второго элемента с . Проведём её для :

Мы видим, что наивный определитель не коммутирует с и поправка Капелли существенна для принадлежности центру.

Произвольное m и дуальные пары[править | править вики-текст]

Вернемся к общему случаю:

для произвольных n и m. Определение операторов Eij можно записать в матричном виде: , где это матрица с элементами ; это матрица с элементами ; это матрица с элементами .

Тождества Капелли-Коши-Бине[править | править вики-текст]

Для произвольного m матрица E является произведением двух прямоугольных матриц: X и транспонированой к D. Если бы все элементы этих матриц коммутировали бы, тогда определитель матрицы E может быть выражен так называемой формулой Бине — Коши] через миноры X и D. Аналогичная формула существует и для матрицы E снова за небольшую плату введения поправки :

,

В частности (подобно коммутативному случаю): если m<n, то ; в случае m=n мы возвращаемся к тождеству выше.

Заметим, что подобно коммутативному случаю, можно выразить не только определитель чE, но и его миноры через миноры X и D:

,

Здесь K = (k1 < k2 < … < ks), L = (l1 < l2 < … < ls) — произвольные мульти-индексы; как обычно обозначает подматрицу M образуемую элементами M kalb. Обратите внимание, что поправка Капелли теперь содержит s, а не n как в предыдущей формуле. Заметим, что для s=1, поправка(si) исчезает и мы получаем просто определение E как произведение X и транспозиции D. Заметим также, что для произвольных K, L соответствующие миноры не коммутируют со всеми элементами Eij, так что тождество Капелли существует не только для центральных элементов.

В качестве следствия из этой формулы и формулы для характеристичного многочлена из предыдущего раздела упомянем следующее:

где . Эта формула аналогична коммутативному случаю, за исключением поправки в левой части и замены tn на t[n] в правой.

Соотношение с дуальными парами[править | править вики-текст]

Современный интерес к этим группам возник, благодаря Роджеру Хоуву[en], который рассмотрел их в своей теории дуальных пар[en]. В случае первого ознакомления с этими идеями имеем дело с операторами . Такие операторы сохраняют степень многочленов. Рассмотрим многочлены первой степени: , мы видим что индекс l сохраняется. С точки зрения теории представлений многочлены первой степени могут быть отождествлены с прямым сложением представлений , здесь l-ое подпространство (l=1…m) натянуто на , i = 1, …, n. Посмотрим ещё раз на векторное пространство:

Такая точка зрения даёт первый намёк на симметрию между m и n. Чтобы взглянуть на эту идею глубже, рассмотрим:

Эти операторы задаются теми же формулами, что и за исключением перенумерации , следовательно, по тем же самыми аргументами, мы можем заключить, что задаёт представление алгебры Ли в векторном пространстве многочленов xij. Прежде, чем идти дальше, обратим внимание на следующее свойство: дифференциальные операторы коммутируют с дифференциальными операторами .

Группа Ли действует на векторном пространстве естественным образом. Можно показать, что соответствующее действие алгебры Ли задается дифференциальными операторами и соответственно. Это объясняет коммутативность этих операторов.

Более того, справедливы следующие свойства:

  • Дифференциальными операторами, коммутирующими с , являются все многочлены в , и только они.
  • Разложение векторного пространства многочленов в прямую сумму тензорных произведений неприводимых представлений and может быть задано следующим образом:

Здесь слагаемые индексируются диаграммой Юнга D, а представления взаимно неизоморфны. Диаграмма определяет и наоборот.

  • В частности представление большой группы такого, что каждое неприводимое представление входит только один раз.

Легко заметить сильное сходство с дуальностью Шура-Вейла[en]

Обобщения[править | править вики-текст]

Обобщению тождества Капелли посвятили свои работы ряд физиков и математиков, среди них: Р. Хоув, Б. Констант[1][2], филдсовский медалист А. Окуньков[3][4], А. Сокал,[5] Д. Зеильбергер.[6]

Предположительно, первые обобщения были получены Гербертом Вестреном Тарнбуллом ещё в 1948 году,[7] который нашёл обобщение для случая симметричных матриц (см. современный обзор в[5][6]).

Остальные обобщения могут быть разделены на несколько групп. Большинство из них основаны на точке зрения алгебры Ли. Такие обобщения состоят из замены алгебры Ли на полупростую группу Ли[8] и их супералгебру[en][9][10] квантовую группу,[11][12] и последующие развитие такого подхода[13]. Также тождество может быть обобщено для других дуальных пар.[14][15] И, наконец, можно рассматривать не только определитель матрицы E, но его перманент[16] след его степеней и иммананты.[3][4][17][18] Упомянем ещё несколько работ[уточнить]:[19][20][21][22][23][24][25]. Считалось в течение долгого времени, что тождество глубоко связано с полупростой группой Ли. Однако новое чисто алгебраическое обобщение тождества, которое было найдено в 2008[5] С. Карасиолло, А. Спортиелло, А. Сокалем, не имеет отношения к алгебре Ли.

Тождество Тёрнбулла для симметричных матриц[править | править вики-текст]

Рассмотрим симметричные матрицы

Герберт Тёрнбулл[7] в 1948 году открыл следующее равенство:

Комбинаторное доказательство можно найти в работе,[6] ещё одно доказательство и интересные[уточнить] обобщения в работе,[5] см. также обсуждение ниже.

Тождество Хоув-Умеда-Констант-Сахи для антисимметричных матриц[править | править вики-текст]

Рассмотрим антисимметричные матрицы

Тогда

Тождество Карасиолло — Спортиелло — Сокала для матриц Манина[править | править вики-текст]

Рассмотрим две матрицы М и Y над некоторым ассоциативным кольцом, которые удовлетворяет условию

для некоторых элементов Qil. Иными словами элементы в j-ой столбце M коммутирует с элементами k-ого ряда Y когда , а в случае, когда , коммутатор элементов Mik и Ykl зависит только от i, l, но не от k.

Предположим, что M это матрица Манина[en] (простейшим примером является матрица с коммутирующими элементами).

Тогда для случая квадратной матрицы

Здесь Q это матрица с элементами Qil, и diag(n − 1, n − 2, …, 1, 0) означает диагональную матрицу с элементами n − 1, n − 2, …, 1, 0 на диагонали.

См.[5] предложение 1.2' формула (1.15) стр. 4, наша Y это транспозиция к их B.

Очевидно, оригинальное тождество Каппели — частный случай этого тождества. Кроме того, из этого тождества видно, что в первоначальном тождестве Каппели можно рассмотреть элементы

для произвольных функций fij и тождество продолжает оставаться верным.

Тождество Мухина — Тарасова — Варченко и модель Годена[править | править вики-текст]

Формулировка[править | править вики-текст]

Рассмотрим матрицы X и D как в тождестве Капелли, то есть с элементами и на позиции (ij).

Пусть z — другая формальная переменная (коммутирующая с x). Пусть A и B — некоторые матрицы, элементы которых комплексные числа.

Здесь первый определитель следует понимать, как всегда, как определитель по столбцам матрицы с некоммутативными записями. Второй определитель должен быть вычислен, помещающая (как будто все элементы коммутативны) все x и z слева, а все дифференцирования справа (такой рецепт называется нормальным порядком[en]* в квантовой механике).

Квантовая интегрируемая система Годена и теорема Талалаева[править | править вики-текст]

Матрица

это матрица Лакса[en] для квантовой интегрируемой системы спиновая цепочка[неизвестный термин] Годена. Д. Талалаев решил давнюю проблему явного решения для полного набора законов сохранения квантового коммутирования в модели Годена, открыв следующую теорему.

Положим

Тогда для всех i, j, z, w

то есть Hi(z) генерируют функции от z для дифференциальных операторов от x, которые все коммутируют. Так что они дают законы сохранения квантового коммутирования в модели Годена.

Перманенты, иммананты, след матрицы — «более высокие тождества Капелли»[править | править вики-текст]

Оригинальное тождество Капелли является утверждением об определителях. Позже аналогичные тождества были найдены для перманентов, имманентов и следа матрицы. Основанная на комбинаторном подходе, статья С. Г. Уильямсона[26] была один из первых результатов в этом направлении.

Тождество Тёрнбулла для перманент антисимметричных матриц[править | править вики-текст]

Рассмотрим антисимметричные матрицы X и D с элементами xij и соответствующими производными, как в случае Хоув-Умеда-Констант-Сахи выше[⇨].

Тогда

Процитируем:[6] «…говорится без доказательства в конце работы Тёрнбулла». Сами авторы следуют Тёрнбуллу — в самом конце их работы они пишут:

«Так как доказательство этого последнего тождества очень похоже на доказательства симметричного аналога Тёрнбулла (с небольшим отклонением), мы оставляем его в качестве поучительного и приятного упражнения для читателя».

Это равенство анализируется в работе[27].

Примечания[править | править вики-текст]

  1. Kostant, B. & Sahi, S. (1991), "The Capelli Identity, tube domains, and the generalized Laplace transform", Advances in Math. Т. 87: 71–92, DOI 10.1016/0001-8708(91)90062-C 
  2. Kostant, B. & Sahi, S. (1993), "Jordan algebras and Capelli identities", Inventiones Mathematicae Т. 112 (1): 71–92, DOI 10.1007/BF01232451 
  3. 1 2 Okounkov, A. (1996), Quantum Immanants and Higher Capelli Identities 
  4. 1 2 Okounkov, A. (1996), Young Basis, Wick Formula, and Higher Capelli Identities 
  5. 1 2 3 4 5 Caracciolo, S.; Sportiello, A. & Sokal, A. (2008), Noncommutative determinants, Cauchy–Binet formulae, and Capelli-type identities. I. Generalizations of the Capelli and Turnbull identities 
  6. 1 2 3 4 Foata, D. & Zeilberger, D. (1993), Combinatorial Proofs of Capelli's and Turnbull's Identities from Classical Invariant Theory 
  7. 1 2 Turnbull, Herbert Westren (1948), "Symmetric determinants and the Cayley and Capelli operators", Proc. Edinburgh Math. Soc. Т. 8 (2): 76–86, DOI 10.1017/S0013091500024822 
  8. Molev, A. & Nazarov, M. (1997), Capelli Identities for Classical Lie Algebras 
  9. Molev, A. (1996), Factorial supersymmetric Schur functions and super Capelli identities 
  10. Nazarov, M. (1996), Capelli identities for Lie superalgebras 
  11. Noumi, M.; Umeda, T. & Wakayma, M. (1994), "A quantum analogue of the Capelli identity and an elementary differential calculus on GLq(n)", Duke Mathematical Journal Т. 76 (2): 567–594, doi:10.1215/S0012-7094-94-07620-5, <http://projecteuclid.org/euclid.dmj/1077286975> 
  12. Noumi, M.; Umeda, T. & Wakayma, M. (1996), "Dual pairs, spherical harmonics and a Capelli identity in quantum group theory", Compositio Mathematica Т. 104 (2): 227–277, <http://www.numdam.org/item?id=CM_1996__104_3_227_0> 
  13. Mukhin, E.; Tarasov, V. & Varchenko, A. (2006), A generalization of the Capelli identity 
  14. Itoh, M. (2004), "Capelli identities for reductive dual pairs", Advances in Mathematics Т. 194 (2): 345–397, DOI 10.1016/j.aim.2004.06.010 
  15. Itoh, M. (2005), "Capelli Identities for the dual pair ( O M, Sp N)", Mathematische Zeitschrift Т. 246 (1–2): 125–154, DOI 10.1007/s00209-003-0591-2 
  16. Nazarov, M. (1991), "Quantum Berezinian and the classical Capelli identity", Letters in Mathematical Physics Т. 21 (2): 123–131, DOI 10.1007/BF00401646 
  17. Nazarov, M. (1996), Yangians and Capelli identities 
  18. Molev, A. (1996), A Remark on the Higher Capelli Identities 
  19. Kinoshita, K. & Wakayama, M. (2002), "Explicit Capelli identities for skew symmetric matrices", Proceedings of the Edinburgh Mathematical Society Т. 45 (2): 449–465, DOI 10.1017/S0013091500001176 
  20. Hashimoto, T. (2008), Generating function for GLn-invariant differential operators in the skew Capelli identity 
  21. Nishiyama, K. & Wachi, A. (2008), A note on the Capelli identities for symmetric pairs of Hermitian type 
  22. Umeda, Toru (2008), "On the proof of the Capelli identities", Funkcialaj Ekvacioj Т. 51 (1): 1–15, DOI 10.1619/fesi.51.1 
  23. Brini, A & Teolis, A (1993), "Capelli's theory, Koszul maps, and superalgebras", PNAS Т. 90 (21): 10245–10249, <http://www.pnas.org/content/90/21/10245.short> 
  24. Koszul, J (1981), "Les algebres de Lie graduées de type sl (n, 1) et l'opérateur de A. Capelli", C.R. Acad. Sci. Paris (no. 292): 139–141 
  25. Orsted, B & Zhang, G (2001), Capelli identity and relative discrete series of line bundles over tube domains, <http://www.math.chalmers.se/Math/Research/Preprints/2001/13.pdf> 
  26. Williamson, S. (1981), "Symmetry operators, polarizations, and a generalized Capelli identity", Linear & Multilinear Algebra Т. 10 (2): 93–102, DOI 10.1080/03081088108817399 
  27. Umeda, Toru (2000), "On Turnbull identity for skew-symmetric matrices", Proc. Edinburgh Math. Soc. Т. 43 (2): 379–393, DOI 10.1017/S0013091500020988 

Ссылки[править | править вики-текст]