Торий

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
90 АктинийТорийПротактиний
Ce

Th

Ubb
Водород Гелий Литий Бериллий Бор Углерод Азот Кислород Фтор Неон Натрий Магний Алюминий Кремний Фосфор Сера Хлор Аргон Калий Кальций Скандий Титан Ванадий Хром Марганец Железо Кобальт Никель Медь Цинк Галлий Германий Мышьяк Селен Бром Криптон Рубидий Стронций Иттрий Цирконий Ниобий Молибден Технеций Рутений Родий Палладий Серебро Кадмий Индий Олово Сурьма Теллур Иод Ксенон Цезий Барий Лантан Церий Празеодим Неодим Прометий Самарий Европий Гадолиний Тербий Диспрозий Гольмий Эрбий Тулий Иттербий Лютеций Гафний Тантал Вольфрам Рений Осмий Иридий Платина Золото Ртуть Таллий Свинец Висмут Полоний Астат Радон Франций Радий Актиний Торий Протактиний Уран Нептуний Плутоний Америций Кюрий Берклий Калифорний Эйнштейний Фермий Менделевий Нобелий Лоуренсий Резерфордий Дубний Сиборгий Борий Хассий Мейтнерий Дармштадтий Рентгений Коперниций Нихоний Флеровий Московий Ливерморий Теннессин ОганесонПериодическая система элементов
90Th
Cubic-face-centered.svg
Electron shell 090 Thorium.svg
Внешний вид простого вещества
Металлический торий
Серый, мягкий, ковкий, вязкий, слаборадиоактивный металл
Свойства атома
Название, символ, номер

Торий / Thorium (Th), 90

Атомная масса
(молярная масса)

232,03806(2)[1] а. е. м. (г/моль)

Электронная конфигурация

[Rn] 6d2 7s2

Радиус атома

180 пм

Химические свойства
Ковалентный радиус

165 пм

Радиус иона

(+4e) 102 пм

Электроотрицательность

1,3 (шкала Полинга)

Степени окисления

4

Энергия ионизации
(первый электрон)

 670,4 (6,95) кДж/моль (эВ)

Термодинамические свойства простого вещества
Плотность (при н. у.)

11,78 г/см³

Температура плавления

2028 K

Температура кипения

5060 K

Уд. теплота плавления

16,11 кДж/моль

Уд. теплота испарения

513,7 кДж/моль

Молярная теплоёмкость

26,23[2] Дж/(K·моль)

Молярный объём

19,8 см³/моль

Кристаллическая решётка простого вещества
Структура решётки

кубическая
гранецентрированая

Параметры решётки

5,080 Å

Температура Дебая

100,00 K

Прочие характеристики
Теплопроводность

(300 K) (54,0) Вт/(м·К)

Номер CAS

7440-29-1

90
Торий
Th
232,0377
6d27s2

То́рий — элемент III группы таблицы Менделеева, принадлежащий к актиноидам; тяжёлый слаборадиоактивный металл.

История[править | править вики-текст]

Впервые торий выделен Й. Берцелиусом в 1828 году из минерала, позже получившего название торит (содержит силикат тория).

Торий был назван его первооткрывателем по имени бога грома Тора в скандинавской мифологии.

Нахождение в природе[править | править вики-текст]

Торий почти всегда содержится в минералах редкоземельных элементов, которые служат одним из источников его получения. Содержание тория в земной коре — 8—13 г/т, в морской воде — 0,05 мкг/л. В магматических породах содержание тория уменьшается от кислых (18 г/т) к основным (3 г/т). Значительное количество тория накапливается в связи с пегматитовыми и постмагматическими процессами, при этом его содержание увеличивается с повышением количества калия в породах. Основная форма нахождения тория в породах в виде основной составной части уран-ториевых, либо изоморфной примеси в акцессорных минералах. В постмагматических процессах в определённых благоприятных условиях (обогащённость растворов галогенами, щелочами и углекислотой) торий способен мигрировать в гидротермальных растворах и фиксироваться в скарновых уран-ториевых и гранат-диопсидовых ортитсодержащих месторождениях. Здесь главными минералами тория являются монацитовый песок и ферриторит. Накапливается торий также в некоторых грейзеновых месторождениях, где он концентрируется в ферриторите либо образует минералы, содержащие титан, уран и др. Входит в состав, в виде примесей, наряду с ураном, в почти любые слюды, (флогопит, мусковит и др.) — породообразующих минералов гранита. Поэтому граниты некоторых месторождений (ввиду слабой, но при длительном воздействии на человека опасной радиации) запрещено использовать в качестве наполнителя для бетона при строительстве.

Месторождения[править | править вики-текст]

Торий содержится в основном в 12 минералах.

Месторождения этих минералов известны в Австралии, Индии, Норвегии, США, Канаде, Южной Африке, Бразилии, Пакистане, Малайзии, Шри-Ланке, Киргизии и других странах[3].

Добыча[править | править вики-текст]

При получении тория торийсодержащие монацитовые концентраты подвергают вскрытию при помощи кислот или щелочей. Редкоземельные элементы извлекают экстракцией с трибутилфосфатом и сорбцией. Далее торий из смеси соединений металлов выделяют в виде диоксида, тетрахлорида или тетрафторида.

Металлический торий затем выделяют из галогенидов или оксида методом металлотермии (кальций-, магний- или натрийтермии) при 900—1000 °С:

электролизом ThF4 или KThF5 в расплаве KF при 800 °С на графитовом аноде.

Цена тория уменьшилась до 73,37 $/кг (2009), по сравнению с 96,55 $/кг (2008).[4]

Химические свойства[править | править вики-текст]

Торий относится к семейству актинидов. Тем не менее специфическая конфигурация электронных оболочек делает его близким Ti, Zr, Hf по некоторым свойствам.

Торий способен проявлять степени окисления +4, +3 и +2. Наиболее устойчива +4. Степени окисления +3 и +2 торий проявляет в галогенидах с Вr и I, полученных действием сильных восстановителей в твердой фазе. Ион Th4+ отличается сильной склонностью к гидролизу и образованию комплексных соединений.

Торий плохо растворяется в основных кислотах. Он растворим в концентрированных растворах НСl (6-12 моль/л) и HNO3 (8-16 моль/л) в присутствии иона фтора. Легко растворим в царской водке. Не реагирует с едкими щелочами.

При нагреве взаимодействует с водородом, галогенами, серой, азотом, кремнием, алюминием и рядом других элементов. Например, в атмосфере водорода при 400—600°С образует гидрид ThH2.

Физические свойства[править | править вики-текст]

Торий — серебристо-белый блестящий, мягкий, ковкий металл. Металл пирофорен, потому порошок тория рекомендуют хранить в керосине. На воздухе чистый металл медленно тускнеет и темнеет, при нагревании воспламеняется и горит ярко белым светом с образованием диоксида. Относительно медленно корродирует в холодной воде, в горячей воде скорость коррозии тория и сплавов на его основе очень высока.

До 1400°С торий имеет кубическую гранецентрированную решетку, выше этой температуры устойчива кубическая объемно-центрированная. При температуре 1,4°К торий проявляет сверхпроводящие свойства.

Температура плавления 1750°С; температура кипения 4788°С. Энтальпия плавления 19,2, испарения 513,7 кДж/моль. Работа выхода электронов 3,51 эВ. Энергии ионизации M → M+ , M+ → M2+, M2+ → M3+, M3+ → M4+ составляют 587, 1110, 1978 и 2780 кДж/моль соответственно.

Изотопы[править | править вики-текст]

На 2012 г. известны 30 изотопов тория и ещё 3 возбуждённых метастабильных состояния некоторых его нуклидов.

Только один из нуклидов тория (торий-232) обладает достаточно большим периодом полураспада по отношению к возрасту Земли, поэтому практически весь природный торий состоит только из этого нуклида. Некоторые из его изотопов могут определяться в природных образцах в следовых количествах, так как входят в радиоактивные ряды радия, актиния и тория и имеют исторические, ныне устаревшие названия:

Наиболее стабильными изотопами являются 232Th (период полураспада составляет 14,05 миллиардов лет), 230Th (75 380 лет), 229Th (7340 лет), 228Th (1,9116 года). Остальные изотопы имеют периоды полураспада менее 30 дней (большинство из них имеют периоды полураспада менее 10 минут)[5].

Применение[править | править вики-текст]

Торий имеет ряд областей применения, в которых подчас играет незаменимую роль. Положение этого металла в Периодической системе элементов и структура ядра предопределили его применение в области мирного использования атомной энергии.

Очищенный торий

Торий-232 — чётно-чётный изотоп (чётное число протонов и нейтронов), поэтому не способен делиться тепловыми нейтронами и быть ядерным горючим. Но при захвате теплового нейтрона 232Th превращается в 233U по схеме:

Уран-233 способен к делению подобно урану-235 и плутонию-239, что открывает более чем серьёзные перспективы для развития атомной энергетики (уран-ториевый топливный цикл (англ.), реакторы на быстрых нейтронах, LFTR). В атомной энергетике применяются карбид, оксид и фторид тория (в высокотемпературных жидкосолевых реакторах) совместно с соединениями урана и плутония и вспомогательными добавками.

Так как общие запасы тория в 3—4 раза превышают запасы урана в земной коре, то атомная энергетика при использовании тория позволит на сотни лет полностью обеспечить энергопотребление человечества.

Кроме атомной энергетики, торий в виде металла с успехом применяется в металлургии (легирование магния и др.), придавая сплаву повышенные эксплуатационные характеристики (сопротивление разрыву, жаропрочность). Отчасти торий в виде окиси применяется в производстве высокопрочных композиций как упрочнитель (для авиапромышленности). Оксид тория из-за его наивысшей температуры плавления из всех оксидов (3350 K) и неокисляемости идёт на производство наиболее ответственных конструкций и изделий, работающих в сверхмощных тепловых потоках, и может быть идеальным материалом для облицовки камер сгорания и газодинамических каналов для МГД-электростанций. Тигли, изготовленные из оксида тория, применяются при работах в области температур около 2500—3100 °C. Ранее оксид тория применялся для изготовления калильных сеток в газовых светильниках.

Торированные катоды прямого накала применяются в электронных лампах, а оксидно-ториевые — в магнетронах и мощных генераторных лампах. Добавка 0,8—1 % ThO2 к вольфраму стабилизирует структуру нитей ламп накаливания. Ксеноновые дуговые лампы почти всегда имеют торированные катод и анод, поэтому незначительно радиоактивны. Оксид тория применяется как элемент сопротивления в высокотемпературных печах. Торий и его соединения широко применяют в составе катализаторов в органическом синтезе.

Биологическая роль[править | править вики-текст]

Торий постоянно присутствует в тканях растений и животных. Коэффициент накопления тория (то есть отношение его концентрации в организме к концентрации в окружающей среде) в морском планктоне — 1250, в донных водорослях — 10, в мягких тканях беспозвоночных — 50—300, рыб — 100. В пресноводных моллюсках его концентрация колеблется от 3·10−7 до 1·10−5 %, в морских животных от 3·10−7 до 3·10−6 %. Торий поглощается главным образом печенью и селезёнкой, а также костным мозгом, лимфатическими узлами и надпочечниками; плохо всасывается из желудочно-кишечного тракта. У человека среднесуточное поступление тория с продуктами питания и водой составляет 3 мкг; выводится из организма с мочой и калом (0,1 и 2,9 мкг соответственно). Торий малотоксичен, однако как природный радиоактивный элемент вносит свой вклад в естественный фон облучения организмов.

Интересные факты[править | править вики-текст]

Примечания[править | править вики-текст]

  1. Wieser, M.E. Atomic weights of the elements 2011 (IUPAC Technical Report) : [англ.] / Wieser M.E., Holden N., Coplen T.B. [et al.] // Pure and Applied Chemistry. — 2013. — Vol. 85, Is. 5. — P. 1047-1078. — DOI:10.1351/PAC-REP-13-03-02.
  2. Торий // Химическая энциклопедия: в 5 т. / Редкол.: Зефиров Н. С. (гл. ред.). — М.: Советская энциклопедия, 1995. — Т. 4. — С. 613. — 20 000 экз. — ISBN 5—85270—039—8.
  3. http://profbeckman.narod.ru/RH0.files/25_1.pdf
  4. И. Н. Бекман: Торий. Курс лекций.
  5. G. Audi, O. Bersillon, J. Blachot and A. H. Wapstra (2003). «The NUBASE evaluation of nuclear and decay properties». Nuclear Physics A 729: 3–128. DOI:10.1016/j.nuclphysa.2003.11.001. Bibcode2003NuPhA.729....3A.

Ссылки[править | править вики-текст]