Транспонированная матрица

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Транспонированная матрица — матрица , полученная из исходной матрицы заменой строк на столбцы.

Формально, транспонированная матрица для матрицы размеров  — матрица размеров , определённая как .

Например,

     и     

То есть для получения транспонированной матрицы из исходной нужно каждую строчку исходной матрицы записать в виде столбца в том же порядке.

Свойства транспонированных матриц[править | править вики-текст]

Дважды транспонированная матрица А равна исходной матрице А.
Транспонированная сумма матриц равна сумме транспонированных матриц.
Транспонированное произведение матриц равно произведению транспонированных матриц, взятых в обратном порядке.
При транспонировании можно выносить скаляр.
Определитель транспонированной матрицы равен определителю исходной матрицы.

Связанные определения[править | править вики-текст]

Симметричная матрица (симметрическая матрица) — матрица, удовлетворяющая соотношению .

Для того чтобы матрица была симметричной, необходимо и достаточно, чтобы:

Антисимметричная (кососимметричная) матрица (антисимметрическая, кососимметрическая) — матрица, удовлетворяющая соотношению .

Для того чтобы матрица была антисимметричной, необходимо и достаточно, чтобы:

были равны по модулю и противоположны по знаку, т.е. .

Отсюда следует, что элементы главной диагонали антисимметричной матрицы равняются нулю: .


Для любой квадратной матрицы имеется представление ,

где - симметричная часть, - антисимметричная часть.

См. также[править | править вики-текст]