Треугольный паркет

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
Треугольная мозаика
Треугольная мозаика
Тип Правильная мозаика
Вершинная фигура 3.3.3.3.3.3 (36)
Символ Шлефли
Символ Витхоффа[en] 6 | 3 2
3 | 3 3
| 3 3 3
Диаграмма Коксетера CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.png
CDel node.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.png
CDel node 1.pngCDel split1.pngCDel branch.png = CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
CDel node h.pngCDel split1.pngCDel branch hh.png
Группа симметрии p6m[en], [6,3], (*632)
Вращательная симметрия p6[en], [6,3]+, (632)
p3, [3[3]]+, (333)
Двойственная
мозаика
Шестиугольная мозаика
Свойства Вершинно транзитивна,
рёберно транзитивна[en],
транзитивна по граням[en]

Треуго́льный парке́т (треугольный паркета́ж[1]) или треугольная мозаика — это замощение плоскости равными правильными треугольниками, расположенными сторона к стороне.

Треугольная мозаика является двойственной шестиугольной мозаике — если соединить центры смежных треугольников, то проведённые отрезки дадут шестиугольную мозаику[1][2]. Символ Шлефли треугольного паркета — {3,6}, что означает, что в каждой вершине паркета сходятся 6 треугольников.

Внутренний угол правильного треугольника равен 60 градусов, так что шесть треугольника в одной вершине дают вместе 360 градусов. Это одна из трёх правильных мозаик плоскости. Другие две мозаики — шестиугольный паркет и квадратный паркет.

Шахматная раскраска треугольного паркета

Английский математик Конвей называл мозаику deltille (дельта-мозаикой), поскольку она имеет форму греческой буквы дельта (Δ). Треугольную мозаику можно также назвать кис-шестиугольной мозаикой, если применить операцию kis[en], которая добавляет центральную вершину и треугольники, разбивая грани шестиугольной мозаики.

Однородные раскраски[править | править код]

Существует 9 различных однородных раскрасок[en] треугольной мозаики (по цветам 6 треугольников вокруг вершины — 111111, 111112, 111212, 111213, 111222, 112122, 121212, 121213, 121314). Три из них можно получить их других путём замены цветов — 111212 и 111112 из 121213, комбинируя 1 и 3, в то время как 111213 получается из 121314[3].

Существует один класс архимедовой раскраски[en], 111112, (помечен *), в котором раскраска не является 1-однородной и содержит перемежающиеся ряды треугольников, в которых каждый третий выкрашен. Приведённая раскраска является 2-однородной и таких имеется бесконечно много, поскольку такие раскраски определяются произвольными сдвигами строк.

111111 121212 111222 112122 111112(*)
Uniform triangular tiling 111111.png Uniform triangular tiling 121212.png Uniform triangular tiling 111222.png Uniform triangular tiling 112122.png 2-uniform triangular tiling 111112.png
p6m (*632) p3m1 (*333) cmm (2*22) p2 (2222) p2 (2222)
121213 111212 111112 121314 111213
Uniform triangular tiling 121213.png Uniform triangular tiling 111212.png Uniform triangular tiling 111112.png Uniform triangular tiling 121314.png Uniform triangular tiling 111213.png
p31m (3*3) p3 (333)

Решётка A2 и упаковка кругов[править | править код]

Решётка A*
2
как три треугольные мозаики: CDel node 1.pngCDel split1.pngCDel branch.png + CDel node.pngCDel split1.pngCDel branch 10lu.png + CDel node.pngCDel split1.pngCDel branch 01ld.png

Расположение вершин[en] треугольной мозаики называется решёткой A2[4]. Она является 2-мерным вариантом симлектических сот[en].

Решётка A*
2
(которая также называется A3
2
) может быть построена как объединение трёх решёток A2 и эквивалентна решётке A2.

CDel node 1.pngCDel split1.pngCDel branch.png + CDel node.pngCDel split1.pngCDel branch 10lu.png + CDel node.pngCDel split1.pngCDel branch 01ld.png = dual of CDel node 1.pngCDel split1.pngCDel branch 11.png = CDel node 1.pngCDel split1.pngCDel branch.png

Вершины треугольной мозаики являются центрами наиболее плотной упаковки кругов [5]. Любой круг соприкасается с 6 другими кругами (контактное число). Плотность упаковки равна , это около 90,69 %. Поскольку объединение трёх решёток A2 снова будет решёткой A2, круги можно раскрасить в три цвета.

Ячейкой диаграммы Вороного треугольной мозаики является шестиугольник, так что мозаика Вороного, шестиугольная мозаика, имеет прямое отношение к упаковке кругов.

Решётка A2 упаковки кругов Решётка A*
2
упаковки кругов
Triangular tiling circle packing.png Triangular tiling circle packing3.png

Геометрические варианты[править | править код]

Треугольные мозаики могут быть идентичны {3,6} топологии правильной мозаики (6 треугольника в каждой вершине). Существует 5 вершинно транзитивных вариантов с одинаковыми гранями (транзитивных по граням[en]). С точки зрения симметрии все грани имеют одинаковый цвет, раскраска же на рисунках представляет положение в сетке[6].

Связанные многогранники и мозаики[править | править код]

Плоские мозаики связаны с многогранниками. Располагая меньше треугольников в каждой вершине, получим незаполненное пространство, что позволяет согнуть в фигуру в пирамиду. Отсюда можно получить правильные многогранники: пять, четыре и три треугольника в вершине дают икосаэдр, октаэдр и тетраэдр соответственно.

Эта мозаика топологически связана (как часть последовательности) с правильными многогранниками с символами Шлефли {3,n}.

*n32 симметрии правильных мозаик: 3n or {3,n}
Сферическая Евклидова Компактная гипербол. Пара-
компактная
Некомпактная гиперболическая
Trigonal dihedron.png Uniform tiling 332-t2.png Uniform tiling 432-t2.png Uniform tiling 532-t2.png Uniform polyhedron-63-t2.png H2 tiling 237-4.png H2 tiling 238-4.png H2 tiling 23i-4.png H2 tiling 23j12-4.png H2 tiling 23j9-4.png H2 tiling 23j6-4.png H2 tiling 23j3-4.png
3.3 33 34 35 36 37 38 3 312i 39i 36i 33i

Эта мозаика топологически связана (как часть последовательности) с полуправильными многогранниками с конфигурацией граней Vn.6.6.

Triakistetrahedron.jpg
V3.6.6
Tetrakishexahedron.jpg
V4.6.6
Pentakisdodecahedron.jpg
V5.6.6
Uniform polyhedron-63-t2.png
V6.6.6
Order3 heptakis heptagonal til.png
V7.6.6[en]

Построение Витхоффа из шестиугольных и треугольных мозаик[править | править код]

Подобно однородным многогранникам существует восемь однородных мозаик, базирующихся на правильных шестиугольных мозаиках (или на двойственных треугольных мозаиках).

Если нарисовать плитки исходных граней красным, исходные вершины (получившиеся на их месте многоугольники) жёлтым, а исходные рёбра (получившиеся на их месте многоугольники) синим, существует 8 форм, 7 из которых топологически различны. (Усечённая треугольная мозаика топологически идентична шестиугольной мозаике.)

Связанные правильные комплексные бесконечноугольники[править | править код]

Существует 4 правильных комплексных апейрогона[en], имеющих те же вершины шестиугольной мозаики. Рёбра правильных комплексных апейрогонов могут содержать 2 и более вершин. Правильные апейрогоны p{q}r имеют ограничение: 1/p + 2/q + 1/r = 1. Рёбра имеют p вершин и вершинные фигуры являются r- угольниками [7].

Первый апейрогон состоит из 2-рёбер, следующие два имеют треугольные рёбра, последний имеет перекрывающиеся шестиугольные рёбра.

Complex apeirogon 2-6-6.png Complex apeirogon 3-4-6.png Complex apeirogon 3-6-3.png Complex apeirogon 6-3-6.png
2{6}6 или CDel node 1.pngCDel 6.pngCDel 6node.png 3{4}6 или CDel 3node 1.pngCDel 4.pngCDel 6node.png 3{6}3 или CDel 3node 1.pngCDel 6.pngCDel 3node.png 6{3}6 или CDel 6node 1.pngCDel 3.pngCDel 6node.png

Другие треугольные мозаики[править | править код]

Существуют также три мозаики Лавеса[en], состоящие из треугольников одного типа:

1-uniform 3 dual.svg
Разделённая ромбическая[en]
30°-60°-90° прямоугольные треугольники
1-uniform 2 dual.svg
Разделённая квадратная
45°-45°-90° прямоугольные треугольники
1-uniform 4 dual.svg
триразделённая треугольная мозаика[en]
30°-30°-120° равнобедренные треугольники

См. также[править | править код]

Примечания[править | править код]

  1. 1 2 Голомб, 1975, с. 147.
  2. Weisstein, Eric W. Dual Tessellation (англ.) на сайте Wolfram MathWorld.
  3. Grünbaum, Shephard, 1987, с. 102-107.
  4. The Lattice A2
  5. Critchlow, 1987, с. 74–75, pattern 1.
  6. Grünbaum, Shephard, 1987, с. 473-481.
  7. Coxeter, 1991, с. 111-112, 136.

Литература[править | править код]

  • С.В. Голомб. Полимино = Polyominoes / Пер. с англ. В. Фирсова. Предисл. и ред. И. Яглома. — М.: Мир, 1975. — С. 147. — 207 с.
  • B. Grünbaum, G.C. Shephard. Chapter 2.1: Regular and uniform tilings, Chapter 2.9 Archimedean and Uniform colorings // Tilings and Patterns. — New York: W. H. Freeman & Co., 1987. — С. 58—65,102—107. — ISBN 0-7167-1193-1.

Ссылки[править | править код]