Треугольный паркет

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Треугольная мозаика
Треугольная мозаика
Тип Правильная мозаика
Вершинная фигура 3.3.3.3.3.3 (36)
Символ Шлефли
Символ Визоффа[en] 6 | 3 2
3 | 3 3
| 3 3 3
Диаграмма Коксетера CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.png
CDel node.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.png
CDel node 1.pngCDel split1.pngCDel branch.png = CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
CDel node h.pngCDel split1.pngCDel branch hh.png
Группа симметрии p6m[en], [6,3], (*632)
Вращательная симметрия p6[en], [6,3]+, (632)
p3[en], [3[3]]+, (333)
Двойственная
мозаика
Шестиугольная мозаика
Свойства Вершинно транзитивна[en]*,
рёберно транзитивна[en],
транзитивна по граням[en]

Треуго́льный парке́т (треугольный паркета́ж[1]) или треугольная мозаика — это замощение плоскости равными правильными треугольниками, расположенными сторона к стороне.

Треугольная мозаика является двойственной шестиугольной мозаике — если соединить центры смежных треугольников, то проведённые отрезки дадут шестиугольную мозаику[1][2]. Символ Шлефли треугольного паркета — {3,6}, что означает, что в каждой вершине паркета сходятся 6 треугольников.

Внутренний угол правильного треугольника равен 60 градусов, так что шесть треугольника в одной вершине дают вместе 360 градусов. Это одна из трёх правильных мозаик плоскости. Другие две мозаики — шестиугольный паркет и квадратный паркет.

Шахматная раскраска треугольного паркета

Английский математик Конвей называл мозаику deltille (дельта-маозаикой), поскольку она имеет форму греческой буквы дельта (Δ). Треугольную мозаику можно также назвать кис-шестиугольной мозаикой, если применить операцию kis[en], которая добавляет центральную вершину и треугольники, разбивая грани шестиугольной мозаики.

Однородные раскраски[править | править вики-текст]

Существует 9 различных однородных раскрасок[en] треугольной мозаики (по цветам 6 треугольников вокруг вершины — 111111, 111112, 111212, 111213, 111222, 112122, 121212, 121213, 121314). Три из них можно получить их других путём замены цветов — 111212 и 111112 из 121213, комбинируя 1 и 3, в то время как 111213 получается из 121314[3].

Существует один класс архимедовой раскраски[en], 111112, (помечен *), в котором раскраска не является 1-однородной и содержит перемежающиеся ряды треугольников, в которых каждый третий выкрашен. Приведённая раскраска является 2-однородной и таких имеется бесконечно много, поскольку такие раскраски определяются произвольными сдвигами строк.

111111 121212 111222 112122 111112(*)
Uniform triangular tiling 111111.png Uniform triangular tiling 121212.png Uniform triangular tiling 111222.png Uniform triangular tiling 112122.png 2-uniform triangular tiling 111112.png
p6m (*632) p3m1 (*333) cmm (2*22) p2 (2222) p2 (2222)
121213 111212 111112 121314 111213
Uniform triangular tiling 121213.png Uniform triangular tiling 111212.png Uniform triangular tiling 111112.png Uniform triangular tiling 121314.png Uniform triangular tiling 111213.png
p31m (3*3) p3 (333)

Решётка A2 и упаковка кругов[править | править вики-текст]

Решётка A*
2
как три треугольные мозаики: CDel node 1.pngCDel split1.pngCDel branch.png + CDel node.pngCDel split1.pngCDel branch 10lu.png + CDel node.pngCDel split1.pngCDel branch 01ld.png

Расположение вершин[en] треугольной мозаики называется решёткой A2[4]. Она является 2-мерным вариантом симлектических сот[en].

Решётка A*
2
(которая также называется A3
2
) может быть построена как объединение трёх решёток A2 и эквивалентна решётке A2.

CDel node 1.pngCDel split1.pngCDel branch.png + CDel node.pngCDel split1.pngCDel branch 10lu.png + CDel node.pngCDel split1.pngCDel branch 01ld.png = dual of CDel node 1.pngCDel split1.pngCDel branch 11.png = CDel node 1.pngCDel split1.pngCDel branch.png

Вершины треугольной мозаики являются центрами наиболее плотной упаковки кругов [5]. Любой круг соприкасается с 6 другими кругами (контактное число). Плотность упаковки равна , это около 90,69 %. Поскольку объединение трёх решёток A2 снова будет решёткой A2, круги можно раскрасить в три цвета.

Ячейкой диаграммы Вороного треугольной мозаики является шестиугольник, так что мозаика Вороного, шестиугольная мозаика, имеет прямое отношение к упаковке кругов.

Решётка A2 упаковки кругов Решётка A*
2
упаковки кругов
Triangular tiling circle packing.png Triangular tiling circle packing3.png

Геометрические варианты[править | править вики-текст]

Треугольные мозаики могут быть идентичны {3,6} топологии правильной мозаики (6 треугольника в каждой вершине). Существует 5 вершинно транзитивных вариантов с одинаковыми гранями (транзитивных по граням[en]). С точки зрения симметрии все грани имеют одинаковый цвет, раскраска же на рисунках представляет положение в сетке[6].

Связанные многогранники и мозаики[править | править вики-текст]

Плоские мозаики связаны с многогранниками. Располагая меньше треугольников в каждой вершине, получим незаполненное пространство, что позволяет согнуть в фигуру в пирамиду. Отсюда можно получить правильные многогранники: пять, четыре и три треугольника в вершине дают икосаэдр, октаэдр и тетраэдр соответственно.

Эта мозаика топологически связана (как часть последовательности) с правильными многогранниками с символами Шлефли {3,n}.

*n32 симметрии правильных мозаик: 3n or {3,n}
Сферическая Евклидова Компактная гипербол. Пара-
комактная.
Некомпактная гиперболическая
Trigonal dihedron.png Uniform tiling 332-t2.png Uniform tiling 432-t2.png Uniform tiling 532-t2.png Uniform polyhedron-63-t2.png H2 tiling 237-4.png H2 tiling 238-4.png H2 tiling 23i-4.png H2 tiling 23j12-4.png H2 tiling 23j9-4.png H2 tiling 23j6-4.png H2 tiling 23j3-4.png
3.3 33 34 35 36 37 38 3 312i 39i 36i 33i

Эта мозаика топологически связана (как часть последовательности) с полуправильными многогранниками с конфигурацией граней Vn.6.6.

Triakistetrahedron.jpg
V3.6.6
Tetrakishexahedron.jpg
V4.6.6
Pentakisdodecahedron.jpg
V5.6.6
Uniform polyhedron-63-t2.png
V6.6.6
Order3 heptakis heptagonal til.png
V7.6.6[en]

Построение Визоффа из шестиугольных и треугольных мозаик[править | править вики-текст]

Подобно однородным многогранникам[en] существует восемь однородных мозаик, базирующихся на правильных шестиугольных мозаиках (или на двойственных треугольных мозаиках).

Если нарисовать плитки исходных граней красным, исходные вершины (получившиеся на их месте многоугольники) жёлтым, а исходные рёбра (получившиеся на их месте многоугольники) синим, существует 8 форм, 7 из которых топологически различны. (Усечённая треугольная мозаика топологически идентична шестиугольной мозаике.)

Связанные правильные комплексные бесконечноугольники[править | править вики-текст]

Существует 4 правильных комплексных апейрогона[en], имеющих те же вершины шестиугольной мозаики. Рёбра правильных комплексных апейрогонов могут содержать 2 и более вершин. Правильные апейрогоны p{q}r имеют ограничение: 1/p + 2/q + 1/r = 1. Рёбра имеют p вершин и вершинные фигуры являются r- угольниками [7].

Первый апейрогон состоит из 2-рёбер, следующие два имеют треугольные рёбра, последний имеет перекрывающиеся шестиугольные рёбра.

Complex apeirogon 2-6-6.png Complex apeirogon 3-4-6.png Complex apeirogon 3-6-3.png Complex apeirogon 6-3-6.png
2{6}6 или CDel node 1.pngCDel 6.pngCDel 6node.png 3{4}6 или CDel 3node 1.pngCDel 4.pngCDel 6node.png 3{6}3 или CDel 3node 1.pngCDel 6.pngCDel 3node.png 6{3}6 или CDel 6node 1.pngCDel 3.pngCDel 6node.png

Другие треугольные мозаики[править | править вики-текст]

Существуют также три мозаики Лавеса[en], состоящие из треугольников одного типа:

1-uniform 3 dual.svg
Разделённая ромбическая[en]
30°-60°-90° прямоугольные треугольники
1-uniform 2 dual.svg
Разделённая квадратная[en]
45°-45°-90° прямоугольные треугольники
1-uniform 4 dual.svg
триразделённая треугольная мозаика[en]
30°-30°-120° равнобедренные треугольники

См. также[править | править вики-текст]

Примечания[править | править вики-текст]

  1. 1 2 Голомб, с. 147.
  2. Weisstein, Eric W. Dual Tessellation (англ.) на сайте Wolfram MathWorld.
  3. Grünbaum, Shephard, 1987, с. 102-107.
  4. http://www.math.rwth-aachen.de/~Gabriele.Nebe/LATTICES/A2.html
  5. Critchlow, 1987, с. 74–75, pattern 1.
  6. Grünbaum, Shephard, 1987, с. 473-481.
  7. Coxeter, 1991, с. 111-112, 136.

Литература[править | править вики-текст]

  • С.В. Голомб. Полимино = Polyominoes / Пер. с англ. В. Фирсова. Предисл. и ред. И. Яглома. — М.: Мир, 1975. — С. 147. — 207 с.
  • B. Grünbaum, G.C. Shephard. Chapter 2.1: Regular and uniform tilings, Chapter 2.9 Archimedean and Uniform colorings // Tilings and Patterns. — New York: W. H. Freeman & Co., 1987. — С. 58-65,102-107. — ISBN 0-7167-1193-1.

Ссылки[править | править вики-текст]