Тригонометрические функции

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Рис. 1
Графики тригонометрических функций:      синуса      косинуса      тангенса      котангенса      секанса      косеканса

Тригонометри́ческие фу́нкцииэлементарные функции, которые исторически возникли при рассмотрении прямоугольных треугольников и выражали зависимости сторон этих треугольников от острых углов при гипотенузе (или, что равнозначно, зависимость хорд и высот от центрального угла в круге). Эти функции нашли широчайшее применение в самых разных областях науки. Впоследствии определение тригонометрических функций было расширено, их аргументом теперь может быть произвольное вещественное или даже комплексное число. Наука, изучающая свойства тригонометрических функций, называется тригонометрией.

К тригонометрическим функциям относятся:

прямые тригонометрические функции
  • синус (\sin x)
  • косинус (\cos x)
производные тригонометрические функции
  • тангенс (\mathrm{tg}\, x)
  • котангенс (\mathrm{ctg}\, x)
другие тригонометрические функции
  • секанс (\sec x)
  • косеканс (\mathrm{cosec}\, x)

В западной литературе тангенс, котангенс и косеканс часто обозначаются \tan x, \cot x, \csc x.

Кроме этих шести, существуют также некоторые редко используемые тригонометрические функции (версинус и т.д.), а также обратные тригонометрические функции (арксинус, арккосинус и т. д.), рассматриваемые в отдельных статьях.

Синус и косинус вещественного аргумента являются периодическими непрерывными и неограниченно дифференцируемыми вещественнозначными функциями. Остальные четыре функции на вещественной оси также вещественнозначные, периодические и неограниченно дифференцируемые на области определения, но не непрерывные. Тангенс и секанс имеют разрывы второго рода в точках \pm \pi n + \frac{\pi}{2}, а котангенс и косеканс — в точках \pm \pi n.

Содержание

Способы определения[править | править исходный текст]

Геометрическое определение[править | править исходный текст]

Рис. 2
Определение тригонометрических функций

Обычно тригонометрические функции определяются геометрически. Пусть нам дана декартова система координат на плоскости, и построена окружность радиуса R с центром в начале координат O. Измерим углы как повороты от положительного направления оси абсцисс до луча OB. Направление против часовой стрелки считается положительным, по часовой стрелке отрицательным. Абсциссу точки B обозначим x_B, ординату обозначим y_B (см. рисунок).

  • Синусом называется отношение \sin \alpha=\frac{y_B}{R}.
  • Косинусом называется отношение \cos \alpha=\frac{x_B}{R}.
  • Тангенс определяется как \operatorname{tg} \alpha=\frac{\sin\alpha}{\cos\alpha}=\frac{y_B}{x_B}.
  • Котангенс определяется как \operatorname{ctg} \alpha=\frac{\cos\alpha}{\sin\alpha}=\frac{x_B}{y_B}.
  • Секанс определяется как \sec \alpha=\frac{1}{\cos\alpha}=\frac{R}{x_B}.
  • Косеканс определяется как \operatorname{cosec} \alpha=\frac{1}{\sin\alpha}=\frac{R}{y_B}.
Рис. 3
Численные значения тригонометрических функций угла \alpha в тригонометрической окружности с радиусом, равным единице

Ясно, что значения тригонометрических функций не зависят от величины радиуса окружности R в силу свойств подобных фигур. Часто этот радиус принимают равным величине единичного отрезка, тогда синус равен просто ординате y_B, а косинус — абсциссе x_B. На рисунке 3 показаны величины тригонометрических функций для единичной окружности.

Если \alpha — вещественное число, то синусом \alpha в математическом анализе называется синус угла, радианная мера которого равна \alpha, аналогично для прочих тригонометрических функций.


Определение тригонометрических функций для острых углов[править | править исходный текст]

Рис. 4
Тригонометрические функции острого угла

Во многих учебниках элементарной геометрии до настоящего времени тригонометрические функции острого угла определяются как отношения сторон прямоугольного треугольника. Пусть OAB — треугольник с углом α. Тогда:

  • Синусом угла \alpha называется отношение \frac{AB}{OB} (отношение противолежащего катета к гипотенузе).
  • Косинусом угла \alpha называется отношение \frac{OA}{OB} (отношение прилежащего катета к гипотенузе).
  • Тангенсом угла \alpha называется отношение \frac{AB}{OA} (отношение противолежащего катета к прилежащему).
  • Котангенсом угла \alpha называется отношение \frac{OA}{AB} (отношение прилежащего катета к противолежащему).
  • Секансом угла \alpha называется отношение \frac{OB}{OA} (отношение гипотенузы к прилежащему катету).
  • Косекансом угла \alpha называется отношение \frac{OB}{AB} (отношение гипотенузы к противолежащему катету).

Построив систему координат с началом в точке O, направлением оси абсцисс вдоль OA и в случае необходимости изменив ориентацию (перевернув) треугольник так, чтобы он находился в первой четверти системы координат, и затем, построив окружность с радиусом, равным гипотенузе, сразу находим, что такое определение функций приводит к тому же результату, что и предыдущее.

Данное определение имеет некоторое педагогическое преимущество, так как не требует введения понятия системы координат, но также и такой крупный недостаток, что невозможно определить тригонометрические функции даже для тупых углов, которые необходимо знать при решении элементарных задач о тупоугольных треугольниках. (см.: Теорема синусов, Теорема косинусов).

Определение тригонометрических функций как решений дифференциальных уравнений[править | править исходный текст]

Функции косинус и синус можно определить как чётное (косинус) и нечётное (синус) решение дифференциального уравнения

\frac{d^2}{d\varphi^2}R(\varphi) = - R(\varphi),

с начальными условиями \cos\left(0\right) = \sin '\left(0\right) = 1, то есть как функций одной переменной, вторая производная которых равна самой функции, взятой со знаком минус:

\ \left(\cos x\right)'' = - \cos x,
\ \left(\sin  x\right)'' = - \sin x.

Определение тригонометрических функций как решений функциональных уравнений[править | править исходный текст]

Функции косинус и синус можно определить как непрерывные решения (f и g соответственно) системы функциональных уравнений:

\left\{
\begin{array}{rcl}
f(x+y)&=&f(x)f(y)-g(x)g(y)\\
g(x+y)&=&g(x)f(y)+f(x)g(y)
\end{array}
\right.

Определение тригонометрических функций через ряды[править | править исходный текст]

Используя геометрию и свойства пределов, можно доказать, что производная синуса равна косинусу и что производная косинуса равна минус синусу. Тогда можно воспользоваться теорией рядов Тейлора и представить синус и косинус в виде степенны́х рядов:

\sin x=x-\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+\frac{x^9}{9!}-\cdots = \sum_{n=0}^\infty\frac{(-1)^nx^{2n+1}}{(2n+1)!},
\cos x=1-\frac{x^2}{2!}+\frac{x^4}{4!}-\frac{x^6}{6!}+\frac{x^8}{8!}-\cdots = \sum_{n=0}^\infty\frac{(-1)^nx^{2n}}{(2n)!}.

Пользуясь этими формулами, а также уравнениями \operatorname{tg}\,x=\frac{\sin x}{\cos x}, \operatorname{ctg}\,x=\frac{\cos x}{\sin x}, \sec x=\frac{1}{\cos x} и \operatorname{cosec}\,x=\frac{1}{\sin x}, можно найти разложения в ряд и других тригонометрических функций:

{\operatorname{tg}\,x=x+\frac{1}{3}\,x^3 + \frac{2}{15}\,x^5 + \frac{17}{315}\,x^7 + \frac{62}{2835}\,x^9 + \cdots = \sum_{n=1}^\infty\frac{2^{2n}(2^{2n}-1)|B_{2n}|}{(2n)!}x^{2n-1} \quad \left(-\frac{\pi}{2}<x<\frac{\pi}{2}\right),}
{\operatorname{ctg}\,x = \frac{1}{x} - \frac{x}{3} - \frac{x^3}{45} - \frac{2x^5}{945} - \frac{x^7}{4725} - \cdots = \frac{1}{x} - \sum_{n=1}^\infty \frac{2^{2n}|B_{2n}|}{(2n)!}\,x^{2n-1} \quad \left(-\pi < x < \pi\right),}
{\sec x=1+\frac{1}{2}\,x^2+\frac{5}{24}\,x^4+\frac{61}{720}\,x^6+\frac{277}{8064}\,x^8+\cdots = \sum_{n=0}^\infty\frac{|E_{n}|}{(2n)!}\,x^{2n}, \quad \left(-\frac{\pi}{2} < x < \frac{\pi}{2}\right),}
\operatorname{cosec} x = \frac{1}{x} + \frac{1}{6}\,x + \frac{7}{360}\,x^3 + \frac{31}{15120}\,x^5 + \frac{127}{604800}\,x^7 + \cdots = \frac{1}{x} + \sum_{n=1}^\infty \frac{2(2^{2n-1}-1) |B_{2n}|}{(2n)!}\,x^{2n-1} \quad \left(-\pi < x < \pi\right),

где

B_n — числа Бернулли,
E_n — числа Эйлера (англ. Euler numbers).

Значения тригонометрических функций для некоторых углов[править | править исходный текст]

Значения синуса, косинуса, тангенса, котангенса, секанса и косеканса для некоторых углов приведены в таблице. («∞» означает, что функция в указанной точке не определена, а в её окрестности стремится к бесконечности).

 \alpha \,\! 0°(0 рад) 30° (π/6) 45° (π/4) 60° (π/3) 90° (π/2) 180° (π) 270° (3π/2) 360° (2π)
 \sin \alpha \,\! {0} \,\!  \frac{1}{2}\,\!  \frac{\sqrt{2}}{2}\,\!  \frac{ \sqrt{3}}{2}\,\! {1}\,\! {0}\,\! {-1}\,\! {0}\,\!
 \cos \alpha \,\! {1} \,\!   \frac{ \sqrt{3}}{2}\,\!  \frac{\sqrt{2}}{2}\,\!  \frac{1}{2}\,\! {0}\,\! {-1}\,\! {0}\,\! {1}\,\!
 \mathop{\mathrm{tg}}\, \alpha \,\! {0} \,\!  \frac{\sqrt{3}}{3}\,\!  {1}\,\!   \sqrt{3}\,\! {\infty}\,\! {0}\,\! {\infty}\,\! {0}\,\!
 \mathop{\mathrm{ctg}}\, \alpha \,\! {\infty}\,\!   \sqrt{3}\,\! {1} \,\!  \frac{\sqrt{3}}{3}\,\!  {0}\,\! {\infty}\,\! {0}\,\! {\infty}\,\!
 \sec \alpha \,\! {1} \,\!   \frac{2 \sqrt{3}}{3}\,\!   \sqrt{2}\,\!  {2}\,\! {\infty}\,\! {-1}\,\! {\infty}\,\!  {1}\,\!
 \operatorname{cosec}\, \alpha \,\! {\infty}\,\!  {2}\,\!   \sqrt{2}\,\!  \frac{2 \sqrt{3}}{3}\,\! {1}\,\! {\infty}\,\! {-1}\,\! {\infty}\,\!
Значения косинуса и синуса на окружности.


Значения тригонометрических функций нестандартных углов[править | править исходный текст]

\alpha\, \frac{2\pi}{3} = 120^\circ \frac{3\pi}{4} = 135^\circ \frac{5\pi}{6} = 150^\circ \frac{7\pi}{6} = 210^\circ \frac{5\pi}{4} = 225^\circ \frac{4\pi}{3} = 240^\circ \frac{5\pi}{3} = 300^\circ \frac{7\pi}{4} = 315^\circ \frac{11\pi}{6} = 330^\circ
\sin \alpha\, \frac{\sqrt{3}}{2} \frac{\sqrt{2}}{2} \frac{1}{2} -\frac{1}{2} -\frac{\sqrt{2}}{2} -\frac{\sqrt{3}}{2} -\frac{\sqrt{3}}{2} -\frac{\sqrt{2}}{2} -\frac{1}{2}
\cos \alpha\, -\frac{1}{2} -\frac{\sqrt{2}}{2} -\frac{\sqrt{3}}{2} -\frac{\sqrt{3}}{2} -\frac{\sqrt{2}}{2} -\frac{1}{2} \frac{1}{2} \frac{\sqrt{2}}{2} \frac{\sqrt{3}}{2}
\operatorname{tg}\,\alpha -\sqrt{3} {-1}\,\! -\frac{\sqrt{3}}{3} \frac{\sqrt{3}}{3} {1}\,\! \sqrt{3} -\sqrt{3} {-1}\,\! -\frac{\sqrt{3}}{3}
\operatorname{ctg}\,\alpha -\frac{\sqrt{3}}{3} {-1}\,\! -\sqrt{3} \sqrt{3} {1}\,\! \frac{\sqrt{3}}{3} -\frac{\sqrt{3}}{3} {-1}\,\! -\sqrt{3}


\alpha\, \frac{\pi}{12} = 15^\circ \frac{\pi}{10} = 18^\circ \frac{\pi}{8} = 22{{,}}5^\circ \frac{\pi}{5} = 36^\circ \frac{3\,\pi}{10} = 54^\circ \frac{3\,\pi}{8} = 67{{,}}5^\circ \frac{2\,\pi}{5} = 72^\circ \frac{5\,\pi}{12} = 75^\circ
\sin \alpha\, \frac{\sqrt{3}-1}{2\,\sqrt{2}} \frac{\sqrt{5}-1}{4} \frac{\sqrt{2-\sqrt{2}}}{2} \frac{\sqrt{5-\sqrt{5}}}{2\,\sqrt{2}} \frac{\sqrt{5}+1}{4} \frac{\sqrt{2+\sqrt{2}}}{2} \frac{\sqrt{5+\sqrt{5}}}{2\,\sqrt{2}} \frac{\sqrt{3}+1}{2\,\sqrt{2}}
\cos \alpha\, \frac{\sqrt{3}+1}{2\,\sqrt{2}} \frac{\sqrt{5+\sqrt{5}}}{2\,\sqrt{2}} \frac{\sqrt{2+\sqrt{2}}}{2} \frac{\sqrt{5}+1}{4} \frac{\sqrt{5-\sqrt{5}}}{2\,\sqrt{2}} \frac{\sqrt{2-\sqrt{2}}}{2} \frac{\sqrt{5}-1}{4} \frac{\sqrt{3}-1}{2\,\sqrt{2}}
\operatorname{tg}\,\alpha 2-\sqrt{3} \sqrt{1-\frac{2}{\sqrt{5}}} \sqrt{2}-1 \sqrt{5-2\,\sqrt{5}} \sqrt{1+\frac{2}{\sqrt{5}}} \sqrt{2}+1 \sqrt{5+2\,\sqrt{5}} 2 + \sqrt{3}
\operatorname{ctg}\,\alpha 2 + \sqrt{3} \sqrt{5+2\,\sqrt{5}} \sqrt{2}+1 \sqrt{1+\frac{2}{\sqrt{5}}} \sqrt{5-2\,\sqrt{5}} \sqrt{2}-1 \sqrt{1-\frac{2}{\sqrt{5}}} 2-\sqrt{3}

Свойства тригонометрических функций[править | править исходный текст]

Простейшие тождества[править | править исходный текст]

Поскольку синус и косинус являются соответственно ординатой и абсциссой точки, соответствующей на единичной окружности углу α, то, согласно уравнению единичной окружности или теореме Пифагора, имеем:

\sin^2 \alpha + \cos^2 \alpha = 1.\,

Это соотношение называется основным тригонометрическим тождеством.

Деля это уравнение на квадрат косинуса и синуса соответственно имеем далее:

 1 + \mathop{\mathrm{tg}}\,^2 \alpha = \frac{1}{ \cos^2 \alpha},\,
 1 + \mathop{\mathrm{ctg}}\,^2 \alpha = \frac{1}{ \sin^2 \alpha},\,
 \mathop{\mathrm{tg}}\,\alpha  \cdot \mathop{\mathrm{ctg}}\,\alpha=1.

Непрерывность[править | править исходный текст]

Синус и косинус — непрерывные функции. Тангенс и секанс имеют точки разрыва \pm90^\circ,\;\pm270^\circ,\;\pm450^\circ,\;\dots; котангенс и косеканс — 0^\circ,\;\pm180^\circ,\;\pm360^\circ,\;\dots.

Чётность[править | править исходный текст]

Косинус и секанс — чётные. Остальные четыре функции — нечётные, то есть:

 \sin \left( - \alpha \right)  =  - \sin \alpha \,,
 \cos \left( - \alpha \right)  =  \cos \alpha \,,
 \mathop{\mathrm{tg}}\, \left( - \alpha \right)  = - \mathop{\mathrm{tg}}\, \alpha \,,
 \mathop{\mathrm{ctg}}\, \left( - \alpha \right)  = - \mathop{\mathrm{ctg}}\, \alpha \,,
 \sec \left( - \alpha \right)  =  \sec \alpha \,,
 \mathop{\mathrm{cosec}}\, \left( - \alpha \right)  = - \mathop{\mathrm{cosec}}\, \alpha \,.

Периодичность[править | править исходный текст]

Функции  y = \mathop{\mathrm{sin}}\, x ,\quad y = \mathop{\mathrm{cos}}\, x ,\quad y = \mathop{\mathrm{sec}}\, x ,\quad y = \mathop{\mathrm{cosec}}\, x  — периодические с периодом 2\pi, функции  y = \mathop{\mathrm{tg}} \,x и  y = \mathop{\mathrm{ctg}} \,x — c периодом \pi.

Формулы приведения[править | править исходный текст]

Формулами приведения называются формулы следующего вида:

 f ( n \pi + \alpha )  = \pm  f (\alpha),\,
 f ( n \pi - \alpha )  = \pm  f (\alpha),\,
 f \left(  \frac{(2n+1) \pi}{2} + \alpha\right)  = \pm  g (\alpha),\,
 f \left(  \frac{(2n+1) \pi}{2} - \alpha\right)  = \pm  g (\alpha).\,

Здесь f — любая тригонометрическая функция, g — соответствующая ей кофункция (то есть косинус для синуса, синус для косинуса, тангенс для котангенса, котангенс для тангенса, секанс для косеканса и косеканс для секанса), n — целое число. Перед полученной функцией ставится тот знак, который имеет исходная функция в заданной координатной четверти при условии, что угол α острый, например:

 \cos \left(  \frac{ \pi}{2} - \alpha \right)  =   \sin \alpha\,,

Некоторые формулы приведения:

\beta\, \frac{\pi}{2} + \alpha \pi + \alpha\, \frac{3\,\pi}{2} + \alpha \frac{\pi}{2} - \alpha \pi - \alpha\, \frac{3\,\pi}{2} - \alpha 2\,\pi - \alpha
\sin\beta\, \cos\alpha\, -\sin\alpha\, -\cos\alpha\, \cos\alpha\, \sin\alpha\, -\cos\alpha\, -\sin\alpha\,
\cos\beta\, -\sin\alpha\, -\cos\alpha\, \sin\alpha\, \sin\alpha\, -\cos\alpha\, -\sin\alpha\, \cos\alpha\,
\operatorname{tg}\,\beta -\operatorname{ctg}\,\alpha \operatorname{tg}\,\alpha -\operatorname{ctg}\,\alpha \operatorname{ctg}\,\alpha -\operatorname{tg}\,\alpha \operatorname{ctg}\,\alpha -\operatorname{tg}\,\alpha
\operatorname{ctg}\,\beta -\operatorname{tg}\,\alpha \operatorname{ctg}\,\alpha -\operatorname{tg}\,\alpha \operatorname{tg}\,\alpha -\operatorname{ctg}\,\alpha \operatorname{tg}\,\alpha -\operatorname{ctg}\,\alpha

Формулы сложения[править | править исходный текст]

Значения тригонометрических функций суммы и разности двух углов:

 \sin\left( \alpha \pm \beta \right)= \sin\alpha \, \cos\beta \pm \cos\alpha \, \sin\beta,
 \cos\left( \alpha \pm \beta \right)= \cos\alpha \, \cos\beta \mp \sin\alpha \, \sin\beta,
 \operatorname{tg}\left( \alpha \pm \beta \right) = \frac{\operatorname{tg}\,\alpha \pm \operatorname{tg}\,\beta}{1 \mp \operatorname{tg}\,\alpha \, \operatorname{tg}\,\beta},
 \operatorname{ctg}\left( \alpha \pm \beta \right) = \frac{\operatorname{ctg}\,\alpha\,\operatorname{ctg}\,\beta \mp 1}{\operatorname{ctg}\,\beta \pm \operatorname{ctg}\,\alpha}.

Аналогичные формулы для суммы трёх углов:

\sin \left( \alpha + \beta + \gamma \right) = \sin \alpha \cos \beta \cos \gamma + \cos \alpha \sin \beta \cos \gamma + \cos \alpha \cos \beta \sin \gamma - \sin \alpha \sin \beta \sin \gamma,
\cos \left( \alpha + \beta + \gamma \right) = \cos \alpha \cos \beta \cos \gamma - \sin \alpha \sin \beta \cos \gamma - \sin \alpha \cos \beta \sin \gamma - \cos \alpha \sin \beta \sin \gamma.

Формулы для кратных углов[править | править исходный текст]

Формулы двойного угла:

\sin 2\alpha = 2 \sin \alpha \cos \alpha = \frac{2\,\operatorname{tg}\,\alpha }{1 + \operatorname{tg}^2\alpha} = \frac{2\,\operatorname{ctg}\,\alpha }{1 + \operatorname{ctg}^2\alpha} = \frac{2}{\operatorname{tg}\,\alpha + \operatorname{ctg}\,\alpha},
\cos 2\alpha = \cos^2 \alpha\,-\,\sin^2 \alpha = 2 \cos^2 \alpha\,-\,1 = 1\,-\,2 \sin^2 \alpha = \frac{1 - \operatorname{tg}^2 \alpha}{1 + \operatorname{tg}^2\alpha} = \frac{\operatorname{ctg}^2 \alpha - 1}{\operatorname{ctg}^2\alpha + 1} = \frac{\operatorname{ctg}\,\alpha - \operatorname{tg}\,\alpha}{\operatorname{ctg}\,\alpha + \operatorname{tg}\,\alpha},
\operatorname{tg}\,2 \alpha = \frac{2\,\operatorname{tg}\,\alpha}{1 - \operatorname{tg}^2\alpha} = \frac{2\,\operatorname{ctg}\,\alpha}{\operatorname{ctg}^2\alpha - 1} = \frac{2}{\operatorname{ctg}\,\alpha - \operatorname{tg}\,\alpha},
\operatorname{ctg}\,2 \alpha = \frac{\operatorname{ctg}^2 \alpha - 1}{2\,\operatorname{ctg}\,\alpha} = \frac{\operatorname{ctg}\,\alpha - \operatorname{tg}\,\alpha}{2}.

Формулы тройного угла:

\sin\,3\alpha=3\sin\alpha - 4\sin^3\alpha,
\cos\,3\alpha=4\cos^3\alpha -3\cos\alpha,
\operatorname{tg}\,3\alpha=\frac{3\,\operatorname{tg}\,\alpha - \operatorname{tg}^3\,\alpha}{1 - 3\,\operatorname{tg}^2\,\alpha},
\operatorname{ctg}\,3\alpha=\frac{\operatorname{ctg}^3\,\alpha - 3\,\operatorname{ctg}\,\alpha}{3\,\operatorname{ctg}^2\,\alpha - 1}.

Прочие формулы для кратных углов:

\sin\,4\alpha=\cos\alpha \left(4\sin\alpha - 8\sin^3\alpha\right),
\cos\,4\alpha=8\cos^4\alpha - 8\cos^2\alpha + 1,
\operatorname{tg}\,4\alpha=\frac{4\,\operatorname{tg}\,\alpha - 4\,\operatorname{tg}^3\,\alpha}{1 - 6\,\operatorname{tg}^2\,\alpha + \operatorname{tg}^4\,\alpha},
\operatorname{ctg}\,4\alpha=\frac{\operatorname{ctg}^4\,\alpha - 6\,\operatorname{ctg}^2\,\alpha + 1}{4\,\operatorname{ctg}^3\,\alpha - 4\,\operatorname{ctg}\,\alpha},
\sin\,5\alpha=16\sin^5\alpha-20\sin^3\alpha +5\sin\alpha,
\cos\,5\alpha=16\cos^5\alpha-20\cos^3\alpha +5\cos\alpha,
\operatorname{tg}\,5\alpha=\operatorname{tg}\alpha\frac{\operatorname{tg}^4\alpha-10\operatorname{tg}^2\alpha+5}{5\operatorname{tg}^4\alpha-10\operatorname{tg}^2\alpha+1},
\operatorname{ctg}\,5\alpha=\operatorname{ctg}\alpha\frac{\operatorname{ctg}^4\alpha-10\operatorname{ctg}^2\alpha+5}{5\operatorname{ctg}^4\alpha-10\operatorname{ctg}^2\alpha+1},
 \sin (n\alpha)=2^{n-1}\prod^{n-1}_{k=0}\sin\left( \alpha+\frac{\pi k}{n}\right) следует из формулы дополнения и формулы Гаусса для Гамма-функции.

Из формулы Муавра можно получить следующие общие выражения для кратных углов:

\sin(n\alpha)=\sum_{k=0}^{[(n-1)/2]}(-1)^k\binom{n}{2k+1}\cos^{n-2k-1}\alpha\,\sin^{2k+1}\alpha,
\cos(n\alpha)=\sum_{k=0}^{[n/2]}(-1)^k\binom{n}{2k}\cos^{n-2k}\alpha\,\sin^{2k}\alpha,
\mathrm{tg}(n\alpha)=\frac{\sin(n\alpha)}{\cos(n\alpha)}=\dfrac{\displaystyle{\sum\limits_{k=0}^{[(n-1)/2]}(-1)^k\binom{n}{2k+1}\mathrm{tg}^{2k+1}\alpha}}{\displaystyle{\sum\limits_{k=0}^{[n/2]}(-1)^k\binom{n}{2k}\mathrm{tg}^{2k}\alpha}},
\mathrm{ctg}(n\alpha)=\frac{\cos(n\alpha)}{\sin(n\alpha)}=\dfrac{\displaystyle{\sum\limits_{k=0}^{[n/2]}(-1)^k\binom{n}{2k}\mathrm{ctg}^{n-2k}\alpha}}{\displaystyle{\sum\limits_{k=0}^{[(n-1)/2]}(-1)^k\binom{n}{2k+1}\mathrm{ctg}^{n-2k-1}\alpha}},

где [n] — целая часть числа n, \binom{n}{k} — биномиальный коэффициент.

Формулы половинного угла:

\sin\frac{\alpha}{2}=\sqrt{\frac{1-\cos\alpha}{2}},\quad 0 \leqslant \alpha \leqslant 2\pi,
\cos\frac{\alpha}{2}=\sqrt{\frac{1+\cos\alpha}{2}},\quad -\pi \leqslant \alpha \leqslant \pi,
\operatorname{tg}\,\frac{\alpha}{2}=\frac{1-\cos\alpha}{\sin\alpha}=\frac{\sin\alpha}{1+\cos\alpha},
\operatorname{ctg}\,\frac{\alpha}{2}=\frac{\sin\alpha}{1-\cos\alpha}=\frac{1+\cos\alpha}{\sin\alpha},
\operatorname{tg}\,\frac{\alpha}{2}=\sqrt{\frac{1-\cos\alpha}{1+\cos\alpha}},\quad 0 \leqslant \alpha < \pi,
\operatorname{ctg}\,\frac{\alpha}{2}=\sqrt{\frac{1+\cos\alpha}{1-\cos\alpha}},\quad 0 < \alpha \leqslant \pi.

Произведения[править | править исходный текст]

Формулы для произведений функций двух углов:

\sin\alpha \sin\beta = \frac{\cos(\alpha-\beta) - \cos(\alpha+\beta)}{2},
\sin\alpha \cos\beta = \frac{\sin(\alpha-\beta) + \sin(\alpha+\beta)}{2},
\cos\alpha \cos\beta = \frac{\cos(\alpha-\beta) + \cos(\alpha+\beta)}{2},
\operatorname{tg}\,\alpha\,\operatorname{tg}\,\beta = \frac{\cos(\alpha-\beta) - \cos(\alpha+\beta)}{\cos(\alpha-\beta) + \cos(\alpha+\beta)},
\operatorname{tg}\,\alpha\,\operatorname{ctg}\,\beta = \frac{\sin(\alpha-\beta) + \sin(\alpha+\beta)}{\sin(\alpha+\beta) -\sin(\alpha-\beta)},
\operatorname{ctg}\,\alpha\,\operatorname{ctg}\,\beta = \frac{\cos(\alpha-\beta) + \cos(\alpha+\beta)}{\cos(\alpha-\beta) - \cos(\alpha+\beta)}.

Аналогичные формулы для произведений синусов и косинусов трёх углов:

\sin\alpha \sin\beta \sin\gamma = \frac{\sin(\alpha+\beta-\gamma) + \sin(\beta+\gamma-\alpha) + \sin(\alpha-\beta+\gamma) - \sin(\alpha+\beta+\gamma)}{4},
\sin\alpha \sin\beta \cos\gamma = \frac{-\cos(\alpha+\beta-\gamma) + \cos(\beta+\gamma-\alpha) + \cos(\alpha-\beta+\gamma) - \cos(\alpha+\beta+\gamma)}{4},
\sin\alpha \cos\beta \cos\gamma = \frac{\sin(\alpha+\beta-\gamma) - \sin(\beta+\gamma-\alpha) + \sin(\alpha-\beta+\gamma) - \sin(\alpha+\beta+\gamma)}{4},
\cos\alpha \cos\beta \cos\gamma = \frac{\cos(\alpha+\beta-\gamma) + \cos(\beta+\gamma-\alpha) + \cos(\alpha-\beta+\gamma) + \cos(\alpha+\beta+\gamma)}{4}.

Формулы для произведений тангенсов и котангенсов трёх углов можно получить, поделив правые и левые части соответствующих равенств, представленных выше.

Степени[править | править исходный текст]

\sin^2\alpha = \frac{1 - \cos 2\,\alpha}{2}, \operatorname{tg}^2\,\alpha = \frac{1 - \cos 2\,\alpha}{1 + \cos 2\,\alpha},
\cos^2\alpha = \frac{1 + \cos 2\,\alpha}{2}, \operatorname{ctg}^2\,\alpha = \frac{1 + \cos 2\,\alpha}{1 - \cos 2\,\alpha},
\sin^3\alpha = \frac{3\sin\alpha - \sin 3\,\alpha}{4}, \operatorname{tg}^3\,\alpha = \frac{3\sin\alpha - \sin 3\,\alpha}{3\cos\alpha + \cos 3\,\alpha},
\cos^3\alpha = \frac{3\cos\alpha + \cos 3\,\alpha}{4}, \operatorname{ctg}^3\,\alpha = \frac{3\cos\alpha + \cos 3\,\alpha}{3\sin\alpha - \sin 3\,\alpha},
\sin^4\alpha = \frac{\cos 4\alpha - 4\cos 2\,\alpha + 3}{8}, \operatorname{tg}^4\,\alpha = \frac{\cos 4\alpha - 4\cos 2\,\alpha + 3}{\cos 4\alpha + 4\cos 2\,\alpha + 3},
\cos^4\alpha = \frac{\cos 4\alpha + 4\cos 2\,\alpha + 3}{8}, \operatorname{ctg}^4\,\alpha = \frac{\cos 4\alpha + 4\cos 2\,\alpha + 3}{\cos 4\alpha - 4\cos 2\,\alpha + 3}.

Суммы[править | править исходный текст]

 \sin \alpha \pm \sin \beta = 2 \sin \frac{\alpha \pm \beta}{2} \cos \frac{\alpha \mp \beta}{2}
 \cos \alpha + \cos \beta = 2 \cos \frac{\alpha+\beta}{2} \cos \frac{\alpha-\beta}{2}
 \cos \alpha - \cos \beta = - 2 \sin \frac{\alpha+\beta}{2} \sin \frac{\alpha-\beta}{2}
 \operatorname{tg} \alpha \pm \operatorname{tg} \beta = \frac{\sin (\alpha \pm \beta)}{\cos \alpha \cos \beta}
 \operatorname{ctg} \alpha \pm \operatorname{ctg} \beta = \frac{\sin (\beta \pm \alpha)}{\sin \alpha \sin \beta}
 1 \pm \sin {2 \alpha} = (\sin \alpha \pm \cos \alpha)^2 .

Для функций от аргумента x существует представление:

A \sin \ x + B \cos \ x = \sqrt{A^2 + B^2}\sin( x + \phi ),

где угол \phi находится из соотношений:

\sin \phi =  \frac{B}{\sqrt{A^2 + B^2}}, \cos \phi =  \frac{A}{\sqrt{A^2 + B^2}}.

Однопараметрическое представление[править | править исходный текст]

Все тригонометрические функции можно выразить через тангенс половинного угла.

\sin x = \frac{\sin x}{1} = \frac{2\sin \frac{x}{2}\cos \frac{x}{2}}{\sin^2 \frac{x}{2} + \cos^2 \frac{x}{2}} =\frac{2\operatorname{tg} \frac{x}{2}}{1 + \operatorname{tg}^2 \frac{x}{2}}

\cos x = \frac{\cos x}{1} = \frac{\cos^2 \frac{x}{2} - \sin^2 \frac{x}{2}}{\cos^2 \frac{x}{2} + \sin^2 \frac{x}{2}} =\frac{1 - \operatorname{tg}^2 \frac{x}{2}}{1 + \operatorname{tg}^2 \frac{x}{2}}

\operatorname{tg}~x = \frac{\sin x}{\cos x} = \frac{2\operatorname{tg} \frac{x}{2}}{1 - \operatorname{tg}^2 \frac{x}{2}}

\operatorname{ctg}~x = \frac{\cos x}{\sin x} = \frac{1 - \operatorname{tg}^2 \frac{x}{2}}{2\operatorname{tg} \frac{x}{2}}

\sec x = \frac{1}{\cos x} = \frac{1 + \operatorname{tg}^2 \frac{x}{2}}{1 - \operatorname{tg}^2 \frac{x}{2}}

\operatorname{cosec}~x = \frac{1}{\sin x} = \frac{1 + \operatorname{tg}^2 \frac{x}{2}} {2\operatorname{tg} \frac{x}{2}}

Производные и интегралы[править | править исходный текст]

Все тригонометрические функции непрерывно и неограниченно дифференцируемы на всей области определения:

( \sin x )' = \cos x \,,

( \cos x )' = -\sin x \,,

( \mathop{\operatorname{tg}}\, x )' = \frac{1}{\cos ^2 x},

( \mathop{\operatorname{ctg}}\, x )' = -\frac{1}{\sin ^2 x},

( \sec x)' = \frac{\sin x}{\cos ^2 x},

( \operatorname{cosec}~x)' = -\frac{\cos x}{\sin ^2 x}.

Интегралы тригонометрических функций на области определения выражаются через элементарные функции следующим образом:

\int\sin x\, dx = -\cos x + C \,,

\int\cos x\, dx = \sin x + C \,,

\int\mathop{\operatorname{tg}}\, x\, dx = -\ln \left| \cos x\right| + C \,,

\int\mathop{\operatorname{ctg}}\, x\, dx = \ln \left| \sin x \right| + C \,,

\int\sec x\, dx=\ln \left| \operatorname{tg} \, \left( \frac {\pi}{4}+\frac{x}{2}\right) \right|+ C \,,

\int \operatorname{cosec}~ x\, dx=\ln \left| \operatorname{tg} \, \frac{x}{2} \right|+ C.

Тригонометрические функции комплексного аргумента[править | править исходный текст]

Определение[править | править исходный текст]

Формула Эйлера:

 e^{i \vartheta} = \cos\vartheta + i\sin\vartheta \,

позволяет определить тригонометрические функции от комплексных аргументов через экспоненту или (с помощью рядов) как аналитическое продолжение их вещественных аналогов:

\sin z = \sum_{n=0}^\infty \frac{(-1)^{n}}{(2n+1)!}z^{2n+1} = \frac{e^{i z} - e^{-i z}}{2i}\, = \frac{\operatorname{sh}  i z }{i};
\cos z = \sum_{n=0}^\infty \frac{(-1)^{n}}{(2n)!}z^{2n} = \frac{e^{i z} + e^{-i z}}{2}\, = \operatorname{ch} i z;
\operatorname{tg}\, z = \frac{\sin z}{\cos z} = \frac{e^{i z} - e^{-i z}}{i(e^{i z} + e^{-i z})};
\operatorname{ctg}\, z = \frac{\cos z}{\sin z} = \frac{i(e^{i z} + e^{-i z})}{e^{i z} - e^{-i z}};
\sec z = \frac{1}{\cos z} = \frac{2}{e^{i z} + e^{-i z}};
\operatorname{cosec}\, z = \frac{1}{\sin z} = \frac{2i}{e^{i z} - e^{-i z}},\, где i^2=-1.\,


Соответственно, для вещественного x,

\cos x = \operatorname{Re}(e^{i x}), \,
\sin x = \operatorname{Im}(e^{i x}). \,

Комплексные синус и косинус тесно связаны с гиперболическими функциями:

\sin (x + iy) = \sin x\, \operatorname{ch}\, y + i \cos x\, \operatorname{sh}\, y,\,
\cos (x + iy) = \cos x\, \operatorname{ch}\, y - i \sin x\, \operatorname{sh}\, y.\,

Большинство перечисленных выше свойств тригонометрических функций сохраняются и в комплексном случае. Некоторые дополнительные свойства:

  • комплексные синус и косинус, в отличие от вещественных, могут принимать сколь угодно большие по модулю значения;
  • все нули комплексных синуса и косинуса лежат на вещественной оси.

Комплексные графики[править | править исходный текст]

На следующих графиках изображена комплексная плоскость, а значения функций выделены цветом. Яркость отражает абсолютное значение (чёрный — ноль). Цвет изменяется от аргумента и угла согласно карте.

Тригонометрические функции в комплексной плоскости
Complex sin.jpg
Complex cos.jpg
Complex tan.jpg
Complex Cot.jpg
Complex Sec.jpg
Complex Csc.jpg

\sin\, z\,

\cos\, z\,

\operatorname{tg}\, z\,

\operatorname{ctg}\, z\,

\sec\, z\,

\operatorname{cosec}\, z\,

История названий[править | править исходный текст]

Линия синуса у индийских математиков первоначально называлась «арха-джива» («полутетива», то есть половина хорды), затем слово «арха» было отброшено и линию синуса стали называть просто «джива». Арабские переводчики не перевели слово «джива» арабским словом «ватар», обозначающим тетиву и хорду, а транскрибировали арабскими буквами и стали называть линию синуса «джиба». Так как в арабском языке краткие гласные не обозначаются, а долгое «и» в слове «джиба» обозначается так же, как полугласная «й», арабы стали произносить название линии синуса «джайб», что буквально обозначает «впадина», «пазуха». При переводе арабских сочинений на латынь европейские переводчики перевели слово «джайб» латинским словом sinus, имеющим то же значение.

Современные краткие обозначения \sin и \cos введены Уильямом Отредом и закреплены в трудах Эйлера.

Термины «тангенс» (от лат. tangens — касающийся) и «секанс» (лат. secans — секущий) были введены датским математиком Томасом Финке (1561—1656) в его книге «Геометрия круглого» (Geometria rotundi, 1583).

Сам термин тригонометрические функции введён Клюгелем в 1770 году.

См. также[править | править исходный текст]

Литература[править | править исходный текст]

  • Бронштейн И. Н., Семендяев К. А. Прямолинейная тригонометрия // Справочник по математике. — Изд. 7-е, стереотипное. — М.: Государственное издательство технико-теоретической литературы, 1967. — С. 179—184.
  • Г. Б. Двайт Тригонометрические функции // Таблицы интегралов и другие математические формулы. — 4-е изд. — М.: Наука, 1973. — С. 70—102.

Ссылки[править | править исходный текст]