Туннельный диод

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
Обозначение на схемах
Вольт-амперная характеристика (ВАХ) туннельного диода. В диапазоне напряжений U1U2 дифференциальное сопротивление отрицательно

Тунне́льный дио́д — полупроводниковый диод на основе вырожденного полупроводника, на вольт-амперной характеристике которого при приложении напряжения в прямом направлении появляется участок с отрицательным дифференциальным сопротивлением, обусловленный туннельным эффектом.

Устройство[править | править код]

Обычные диоды при увеличении прямого напряжения монотонно увеличивают пропускаемый ток. В туннельном диоде квантово-механическое туннелирование электронов добавляет прогиб в ВАХ, при этом из-за высокой степени легирования p- и n-областей напряжение пробоя уменьшается практически до нуля. Туннельный эффект позволяет электронам преодолеть энергетический барьер в зоне перехода с шириной 50—150 Å при таких напряжениях, когда зона проводимости в n-области имеет равные энергетические уровни с валентной зоной р-области[1]. При дальнейшем увеличении прямого напряжения уровень Ферми n-области поднимается относительно р-области, попадая на запрещённую зону р-области, а поскольку туннелирование не может изменить полную энергию электрона[2], вероятность перехода электрона из n-области в p-область резко падает. Это создаёт на прямом участке ВАХ участок, где увеличение прямого напряжения сопровождается уменьшением силы тока. Данная область отрицательного дифференциального сопротивления и используется для усиления слабых сверхвысокочастотных сигналов.

История изобретения[править | править код]

В начале 1920-х годов в России Олег Лосев обнаружил кристадинный эффект в диодах из кристаллического оксида цинка ZnO, выращенного гидротермально из водного раствора гидроксида цинка и цинката калия — эффект отрицательного дифференциального сопротивления. Механизм возникновения отрицательного дифференциального сопротивления в опытах Лосева неясен. Большинство специалистов предполагают, что он вызван туннельным эффектом в полупроводнике, но прямых экспериментальных подтверждений этого объяснения пока не получено[3]. В то же время, возможным механизмом эффекта может быть лавинный пробой или другие физические эффекты[3], приводящие к возникновению отрицательного дифференциального сопротивления. При этом кристадин и туннельный диод — это разные устройства, и отрицательное дифференциальное сопротивление у них проявляется на разных участках ВАХ.

Впервые туннельный диод был изготовлен на основе Ge в 1957 году Лео Эсаки, который в 1973 году получил Нобелевскую премию по физике за экспериментальное обнаружение эффекта туннелирования электронов в этих диодах.

Применение[править | править код]

Туннельный диод 1N3716 (рядом для масштаба сфотографирован джампер)

Наибольшее распространение на практике получили туннельные диоды из Ge, GaAs, а также из GaSb. Эти диоды находят широкое применение в качестве предварительных усилителей, генераторов и высокочастотных переключателей. Они работают на частотах, во много раз превышающих частоты работы тетродов — до 30…100 ГГц.

См. также[править | править код]

Примечания[править | править код]

  1. Статья «Туннельный диод» в БСЭ
  2. Статья «Туннельный эффект» в БСЭ
  3. 1 2 Новиков М. А. Олег Владимирович Лосев — пионер полупроводниковой электроники (К столетию со дня рождения) // Физика твёрдого тела. — 2004. — Т. 46, вып. 1. — С. 5—9. Архивировано 19 февраля 2012 года.

Литература[править | править код]

  • Лебедев А. И. Физика полупроводниковых приборов. Физматлит, 2008.

Ссылки[править | править код]