Уплощённая треугольная клиноротонда

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
Уплощённая треугольная клиноротонда
Triangular hebesphenorotunda.png
(3D-модель)
Тип многогранник Джонсона
Свойства выпуклая
Комбинаторика
Элементы
20 граней
36 рёбер
18 вершин
Χ = 2
Грани 13 треугольников
3 квадрата
3 пятиугольника
1 шестиугольник
Конфигурация вершины 3(33.5)
6(3.4.3.5)
3(3.5.3.5)
2x3(32.4.6)
Классификация
Обозначения J92, М20
Группа симметрии C3v
Commons-logo.svg Медиафайлы на Викискладе

Уплощённая треуго́льная клинорото́нда[1][2] — один из многогранников Джонсона (J92, по Залгаллеру — М20).

Составлена из 20 граней: 13 правильных треугольников, 3 квадратов, 3 правильных пятиугольников и 1 правильного шестиугольника. Шестиугольная грань окружена тремя квадратными и тремя треугольными; каждая пятиугольная — пятью треугольными; каждая квадратная — шестиугольной и тремя треугольными; среди треугольных 1 грань окружена тремя пятиугольными, 3 грани — двумя пятиугольными и квадратной, 6 граней — пятиугольной, квадратной и треугольной, остальные 3 — шестиугольной и двумя треугольными.

Имеет 36 рёбер одинаковой длины. 3 ребра располагаются между шестиугольной и квадратной гранями, 3 ребра — между шестиугольной и треугольной, 15 рёбер — между пятиугольной и треугольной, 9 рёбер — между квадратной и треугольной, остальные 6 — между двумя треугольными.

У уплощённой треугольной клиноротонды 18 вершин. В 3 вершинах (расположенных как вершины правильного треугольника) сходятся две пятиугольных грани и две треугольных; в 6 вершинах (расположенных как вершины неправильного плоского шестиугольника) сходятся пятиугольная, квадратная и две треугольных грани; в 3 вершинах (расположенных как вершины правильного треугольника) сходятся пятиугольная и три треугольных грани; в 6 вершинах (расположенных как вершины правильного шестиугольника) сходятся шестиугольная, квадратная и две треугольных грани.

Метрические характеристики[править | править код]

Если уплощённая треугольная клиноротонда имеет ребро длины , её площадь поверхности и объём выражаются как[2]

В координатах[править | править код]

Уплощённую треугольную клиноротонду с длиной ребра можно расположить в декартовой системе координат так, чтобы её вершины имели следующие координаты:

  • треугольник, параллельный шестиугольнику:
  • основания треугольников, имеющих с первым треугольником общую вершину:
  • вершины пятиугольников напротив первого треугольника:
  • шестиугольник:

где — отношение золотого сечения.

При этом ось симметрии многогранника будет совпадать с осью Oz, а одна из трёх плоскостей симметрии — с плоскостью yOz.

Примечания[править | править код]

  1. Залгаллер В. А. Выпуклые многогранники с правильными гранями / Зап. научн. сем. ЛОМИ, 1967. — Т. 2. — Cтр. 24.
  2. 1 2 А. В. Тимофеенко. Несоставные многогранники, отличные от тел Платона и Архимеда. (PDF) Фундаментальная и прикладная математика, 2008, том 14, выпуск 2. — Стр. 188—190, 204.

Ссылки[править | править код]