Уравнение Коши — Эйлера

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

В математике (дифференциальных уравнениях), уравнение Коши — Эйлера (Эйлера — Коши) является частным случаем линейного дифференциального уравнения (см. линейное дифференциальное уравнение), приводимым к линейному дифференциальному уравнению с постоянными коэффициентами, которое имеет простой алгоритм решения.

Уравнение порядка n[править | править вики-текст]

Общий вид уравнения :

.

Его частный случай :

.

Подстановка[править | править вики-текст]

Подстановка вида то есть приводит уравнение к виду линейного дифференциального уравнения с постоянными коэффициентами.
Действительно, заметим, что , и .
В соответствии с этим:



откуда



таким образом



Вычислим очередную производную сложной функции

,

что приводит к

.

и далее





что, аналогично, приводит к



Эта цепь вычислений может быть продолжена до любого порядка n

Пример[править | править вики-текст]

Дано неоднородное уравнение

.

Определив подстановку , приходим к уравнению

.

После приведения имеем линейное неоднородное уравнение с постоянными коэффициентами

,

решение которого имеет вид



или в терминах



Уравнение второго порядка[править | править вики-текст]

Общий вид уравнения :

.

Его частный случай :

.

Подстановкой то есть
или, соответственно,

то есть

приводится к виду линейного дифференциального уравнения второго порядка с постоянными коэффициентами.

.

или, соответственно,

.

Пример[править | править вики-текст]

Дано неоднородное уравнение

.

Определив подстановку (), приходим к уравнению

.

После приведения имеем линейное неоднородное уравнение с постоянными коэффициентами

,

решение которого имеет вид



или в терминах



Ещё один способ решения однородного уравнения второго порядка[править | править вики-текст]

Рассмотрим однородное уравнения второго порядка вида:

.

Его решениями являются функции вида:

,

где  — решения характеристического уравнения

,

которое совпадает с характеристическим уравнением однородного уравнения с постоянными коэффициентами, полученного из исходного уравнения путём описанной выше замены переменной.

Пример[править | править вики-текст]

Дано однородное уравнение

.

Характеристическое уравнение которого имеет вид

,

с решениями , .
Тогда общее решение однородного уравнения