Уравнение Льенара

Материал из Википедии — свободной энциклопедии
(перенаправлено с «Уравнение Линарда»)
Перейти к: навигация, поиск

Уравнение Лиенара — уравнение, часто использующееся в теории колебаний и динамических систем. Названо в честь французского физика А. Лиенара.

Определение[править | править вики-текст]

Пусть и  — две гладкие функции в пространстве . Пусть  — нечётная функция, а  — чётная. Тогда уравнение вида

называется уравнением Лиенара.[1]

Кроме того, уравнение Лиенара можно[2][3] свести к дифференциальному уравнению первого порядка, сделав замену . Тогда уравнение Лиенара преобразуется в уравнение Абеля второго типа:

Примеры[править | править вики-текст]

  • Осциллятор Ван дер Поля имеет вид уравнения Лиенара при .

Связанные определения[править | править вики-текст]

Система Лиенара[править | править вики-текст]

Уравнение Лиенара может быть преобразовано в систему дифференциальных уравнений.

Пусть

;
;
.

Тогда система вида

называется системой Лиенара.

Теорема Лиенара[править | править вики-текст]

Система Лиенара имеет единственный и устойчивый предельный цикл около начала координат, если система удовлетворяет следующим трём критериям:

  • для всех ;
  • имеет только один положительный корень при некотором значении параметра , где
при и
и монотонна при .

Примечания[править | править вики-текст]

  1. Liénard, A. (1928) "Etude des oscillations entretenues, " Revue générale de l'électricité 23, pp. 901—912 and 946—954.
  2. Liénard equation at eqworld.
  3. Abel equation of the second kind at eqworld.

См. также[править | править вики-текст]