Усечение (геометрия)

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
Regular polygon truncation 4 1.svg
Усечённый квадрат является правильным восьмиугольником:
t{4} = {8}
CDel node 1.pngCDel 4.pngCDel node 1.png = CDel node 1.pngCDel 8.pngCDel node.png
Truncated hexahedron.png
Усечённый куб
t{4,3} или CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
Truncated cubic honeycomb.png
Усечённые кубические соты[en]
t{4,3,4} или CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png

В геометрии усечение — это операция в пространстве любой размерности, которая отсекает вершины политопа и при которой образуются новые грани на месте вершин. Термин берёт начало от названий архимедовых тел, данных Кеплером.

Однородное отсечение[править | править код]

Усечение правильного многоугольника

В общем случае любой многогранник может быть усечён с некоторой степенью свободы выбора глубины усечения, что показано в статье Нотация Коксетера[en].

Обычно применяемый вид усечения — однородное усечение, при котором операция усечения применяется к правильному многограннику и результатом которого получается однородный многогранник[en] с равными длинами рёбер. В этом случае нет свободы выбора и в результате получаем вполне определённые геометрические тела, похожие на правильные многогранники.

В общем случае все однородные многогранники с одним обведённым узлом (в диаграмме Коксетера — Дынкина) имеют однородное усечение. Например, икосододекаэдр, предствленный символами Шлефли r{5,3} или и имеющий диаграммы Коксетера — Дынкина CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.png или CDel node 1.pngCDel split1-53.pngCDel nodes.png, имеет однородное усечение — ромбоусечённый икосододекаэдр с нотациями tr{5,3} или , CDel node 1.pngCDel split1-53.pngCDel nodes 11.png. В диаграмме Коксетера — Дынкина эффект усечения проявляется в том, что у всех узлов, смежных с обведённым, появляются кружки.

Усечение многоугольников[править | править код]

Усечённый n-сторонний многоугольник будет иметь 2n сторон. Однородно усечённый правильный многоугольник становится другим правильным многоугольником: t{n} = {2n}. Полное усечение, r{3}, является другим правильным многоугольником, двойственным[en] исходному.

Правильные многоугольники можно также представить диаграммой Коксетера — Дынкина, CDel node 1.pngCDel n.pngCDel node.png, и его однородное усечение будет иметь диаграмму CDel node 1.pngCDel n.pngCDel node 1.png, а его полное усечение — диаграмму CDel node.pngCDel n.pngCDel node 1.png. Граф CDel node.pngCDel n.pngCDel node.png представляет группу Коксетера I2(n), в которой каждый узел является зеркалом, а каждое ребро представляет угол π/n между зеркалами, кружки же вокруг одного или двух зеркал показывают, какие из них активны.

Параметрическое усечение треугольника
Regular truncation 3 0.0.svg
{3}
CDel node 1.pngCDel 3.pngCDel node.png
Regular truncation 3 0.2.svg Regular truncation 3 0.333.svg
t{3} = {6}
CDel node 1.pngCDel 3.pngCDel node 1.png
Regular truncation 3 0.45.svg Regular truncation 3 0.5.svg
r{3} = {3}
CDel node.pngCDel 3.pngCDel node 1.png

Звёздчатые многоугольники могут быть тоже усечены. Усечённая пентаграмма {5/2} будет выглядеть как пятиугольник, но, в действительности, является дважды накрытым (вырожденным) десятиугольником ({10/2}) с двумя множествами наложенных друг на друга вершин и сторон. Усечённая большая гептаграмма (семиугольная звезда) {7/3} даёт четырнадцатиугольную звезду {14/3}.

Однородное усечение правильных многогранников и мозаик[править | править код]

Усечение куба до полного отсечения

Когда речь идёт об усечении правильных многогранников или мозаик из правильных многоугольников[en], обычно использыется «однородное усечение», что предполагает усечение до состояния, когда исходные грани становятся правильными многоугольниками с удвоенным числом сторон.

Cube truncation sequence(ru).svg

Последовательность на рисунке показывает пример усечения куба, где показаны четыре шага из непрерывного процесса усечения от полного куба до полного усечения куба. Конечное тело — кубооктаэдр.

Среднее изображение является однородным усечённым кубом. Он представлен символом Шлефли t{p,q,…}.

Глубокое усечение[en] — это более сильное усечение, удаляющее все исходные рёбра, но оставляющие внутренние части исходных граней. Например, усечённый октаэдр является глубоко усечённым кубом: 2t{4,3}.

Полное глубокое усечение называется биректификацией и оно сводит исходные грани к точкам. Многогранник при этом превращается в двойственный многогранник. Например, октаэдр является полным глубоким усечением куба: {3,4} = 2r{4,3}.

Ещё один тип усечения — всестороннее усечение[en], при котором отсекаются рёбра и вершины, что даёт прямоугольники вместо рёбер.

Многогранники в более высоких размерностях имеют другие уровни усечений — ранцинацию[en], при которой отсекаются грани, рёбра и вершины. В размерностях выше 5 существует стерикация[en], при которой отсекаются грани, рёбра и вершины, а также трёхмерные грани.

Усечение рёбер[править | править код]

Усечение рёбер — это снятие фаски с многогранника, как в случае всестороннего усечения, но вершины при этом остаются, а рёбра заменяются шестиугольниками. В 4-мерном многограннике рёбра заменяются на удлинённые бипирамиды[en].

Chamfered cube example.png

Альтернации или частичные усечения[править | править код]

Плосконосый куб можно рассматривать как однородную альтернацию усечённого кубооктаэдра

Альтернация или частичное усечение удаляет только некоторые из исходных вершин.

При частичном усечении или альтернации[en] половина вершин и рёбер полностью удаляется. Операция применима к многогранникам, грани которого имеют чётное число сторон. Грани сокращают число сторон вдвое, а квадратные грани переходят рёбра. Например, тетраэдр является альтернацией куба, h{4,3}.

Умаление[en] — более общий термин, использующийся для многогранников Джонсона, предполагает удаление одной или более вершин, рёбер или граней не трогая оставшиеся вершины. Например, триуменьшенный икосаэдр[en] получается из правильного икосаэдра путём удаления трёх вершин.

Другие частичные усечения основываются на симметрии. Например, тетраэдрально уменьшенный додекаэдр[en].

Обобщённые усечения[править | править код]

Типы усечения показаны для ребра, принадлежащего многоугольнику или многограннику с голубыми и красными вершинами. Ребро меняет ориентацию после полного усечения.

Процесс линейного усечения может быть обобщён путём разрешения параметра усечения быть отрицательным или разрешения проходить через середину ребра, что даёт самопересекающиеся звёздчатые многогранники. Такие многогранники могут быть связаны с некоторыми правильными звёздчатыми многоугольниками[en] и однородными звёздчатыми многогранниками.

  • Мелкое усечение — рёбра уменьшаются в размерах, грани удваивают число сторон, на месте бывших вершин образуются новые грани.
  • Однородное усечение — специальный случай, при котором все полученные рёбра имеют одинаковую длину. В усечённом кубе, t{4,3}, квадратные грани превращаются в восьмиугольники, а вместо вершин образуются треугольники.
  • Антиусечение обратно мелкому усечению. В результате получается многогранник, который похож на исходный, но имеет части, висящие на углах, вместо отрезания углов.
  • Полное усечение — предельное мелкое усечение, где рёбра сводятся к точкам. Примером служит Кубооктаэдр, r{4,3}.
  • Гиперусечение является видом усечения, которое идёт далее полного усечения, обращая исходные рёбра, что приводит к самопересечениям.
  • Квазиусечение является видом усечения, идущего далее гиперусечения, где обращённые рёбра становятся длиннее исходных. Это усечение можно получить из исходного многогранника путём отступления граней от рёбер, то есть движению в обратную сторону от вершины. Например, квазиусечение квадрата даёт правильную октаграмму (t{4,3}={8/3}), а квазиусечение куба даёт однородный звёздчатый усечённый гексаэдр[en], t{4/3,3}.
Усечения квадрата
Types of truncation on square4.png
Типы усечения квадрата, {4}. Исходные рёбра показаны красным цветом, а новые рёбра, полученные в результате усечения — голубым. Однородное усечение является правильным восьмиугольником, t{4}={8}. Полное усечение квадрата становится опять квадратом с диагональной ориентацией сторон. Вершины пронумерованы против часовой стрелки цифрами от 1 до 4, полученные в результате усечения пары отмечены буквами a и b.
Усечения куба
Cube truncation 3.75.png
Cube truncation 0.00.png
Куб
{4,3}
Cube truncation 0.25.png
Cube truncation 0.50.png
Усечение
t{4,3}
Cube truncation 0.75.png
Cube truncation 1.00.png
Полное усечение
r{4,3}
Cube truncation 1.25.png
Cube truncation 3.50.png
Антиусечение
Cube truncation 1.50.png
Гиперусечение
Cube truncation 3.25.png
Cube truncation 3.00.png
Полное квазиусечение
Cube truncation 2.75.png
Cube truncation 2.50.png
Квазиусечение
t{4/3,3}[en]
Cube truncation 2.25.png
Cube truncation 2.00.png
Полное гиперусечение
Cube truncation 1.75.png

См. также[править | править код]

Примечания[править | править код]

Литература[править | править код]

Ссылки[править | править код]

Операции над многогранниками
Основа Усечение Полное усечение Глубокое усечение[en] Двойствен-
ность
Растяжение Всеусечение[en] Альтернация[en]
CDel node 1.pngCDel p.pngCDel node n1.pngCDel q.pngCDel node n2.png CDel node 1.pngCDel p.pngCDel node 1.pngCDel q.pngCDel node.png CDel node.pngCDel p.pngCDel node 1.pngCDel q.pngCDel node.png CDel node.pngCDel p.pngCDel node 1.pngCDel q.pngCDel node 1.png CDel node.pngCDel p.pngCDel node.pngCDel q.pngCDel node 1.png CDel node 1.pngCDel p.pngCDel node.pngCDel q.pngCDel node 1.png CDel node 1.pngCDel p.pngCDel node 1.pngCDel q.pngCDel node 1.png CDel node h.pngCDel p.pngCDel node.pngCDel q.pngCDel node.png CDel node.pngCDel p.pngCDel node h.pngCDel q.pngCDel node h.png CDel node h.pngCDel p.pngCDel node h.pngCDel q.pngCDel node h.png
Uniform polyhedron-43-t0.png Uniform polyhedron-43-t01.png Uniform polyhedron-43-t1.png Uniform polyhedron-43-t12.png Uniform polyhedron-43-t2.png Uniform polyhedron-43-t02.png Uniform polyhedron-43-t012.png Uniform polyhedron-33-t0.png Uniform polyhedron-43-h01.png Uniform polyhedron-43-s012.png
t0{p, q}
{p, q}
t01{p,q}[en]
t{p, q}
t1{p,q}
r{p, q}
t12{p,q}[en]
2t{p, q}
t2{p, q}
2r{p, q}
t02{p,q}[en]
rr{p, q}
t012{p,q}[en]
tr{p, q}
ht0{p,q}[en]
h{q, p}
ht12{p,q}
s{q, p}
ht012{p,q}
sr{p, q}